Download Free Development Of A Multiple Vehicle Collaborative Unmanned Aerial System Book in PDF and EPUB Free Download. You can read online Development Of A Multiple Vehicle Collaborative Unmanned Aerial System and write the review.

The purpose of this research was to design a multiple UAV system with collaborative operation. This project is built on work that has been done in the field of Unmanned Systems at VCU and is aimed at providing a starting point for research into collaborative control of multiple UAVs. The current GCS software was extended to include multiple vehicles per single controller via a new communication protocol. Many changes were made to the user interface to facilitate controlling multiple vehicles with a single operator. A second processor, called an MCS, was added to each vehicle to allow for greater flexibility and processing power, while maintaining backwards-compatibility and limiting infringement on the real-time processing of the FCS itself. The system was fully simulated via both hardware and software simulators, and ultimately the system was field tested using multiple vehicles collaboratively searching a defined area.
The first book to focus on communications and networking in UAVs, covering theory, applications, regulation, policy, and implementation.
Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. Covers some of the most innovative approaches to drones Provides the latest state-of-the-art research and development surrounding unmanned aerial systems Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area
This book presents theoretical foundations and technical implementation guidelines for multi-vehicle fleet maneuvering, which can be implemented by readers and can also be a basis for future research. As a research monograph, this book presents fundamental concepts, theories, and technologies for localization, motion planning, and control of multi-vehicle systems, which can be a reference book for researchers and graduate students from different levels. As a technical guide, this book provides implementation guidelines, pseudocode, and flow diagrams for practitioners to develop their own systems. Readers should have a preliminary knowledge of mobile robotics, state estimation and automatic control to fully understand the contents in this book. To make this book more readable and understandable, extensive experimental results are presented to support each chapter.
A team of launched and coordinated Unmanned aerial vehicles (UAVs), requires advanced technologies in sensing, communication, computing, and control to improve their intelligence and robustness towards autonomous operations. To enhance reliability, robustness, and mission capability of a team of UAVs, a system-oriented and holistic approach is desirable in which all components and subsystems are considered in terms of their roles and impact on the entire system. This volume aims to summarize the recent progress, identify challenges and opportunities, and develop new methodologies and systems on coordinated UAV control. A group of experts working in this area have contributed to this volume in several related aspects of autonomous control of networked UAVs. Their papers introduce new control methodologies, algorithms, and systems that address several important issues in developing intelligent, autonomous or semi-autonomous, networked systems for the next generation of UAVs. The papers share a common focus on improved coordination of the members of the networked system to accomplish a common mission, to achieve heightened capability in system reconfiguration to compensate for lost members or connections, and to enhance robustness against terrain complications and attacks.
Unmanned Aerial Systems (UASs) currently fulfill important roles in modern military operations. Present commitments to research and development efforts for future UASs indicate that their ubiquity and the scope of their applications will only continue to increase. For sophisticated UASs characterized by coordination of multiple vehicles, it is a formidable challenge to maintain an understanding of the complexities arising from the interaction of human supervisory control, automated planning, and network communication. This research investigates the robustness of UAS performance under degraded communication conditions through simulation with a particular futuristic UAS, the On-board Planning System for UxVs in Support of Expeditionary Reconnaissance and Surveillance (OPS-USERS) system. The availability of reliable communications is vital to the success of current UASs. This dependence is not likely to be diminished in future systems where increased inter-vehicle collaboration may actually increase reliance on communications. Characterizing the effects of communications availability on the performance of a simulated UAS provides crucial insight into the response of UASs to communication failure modes which may be encountered in real-world implementations. Additionally, defining a minimum tolerable level of communication availability which will allow a UAS to operate with acceptable performance represents the groundwork for designing engineering specifications for communications systems, as well as for defining conditions under which such a system could be expected to operate effectively. Experiments are designed and executed to investigate the impact of degraded communication conditions on the performance of UASs by sampling the performance of a simulated UAS under a variety of degraded communication conditions. These experimental conditions are based on a similar previous experiment, which utilized the same simulation testbed and investigated the impact of operator workload on system performance in experiments with human participants. However, this research seeks to collect data over a wider range of communication conditions than experimentation with human participants practically allows. Therefore, a human model is also developed to emulate the interaction of an average human operator with the system. After initial experiments validated that the human model produced results that were statistically indistinguishable from the results of the experimental data on which the model was based, it was employed in repeated simulations to collect data across a large number of experimental conditions. Communication availability was modulated by imposing various network connectivity topologies on the agents in the UAS, as well as by introducing artificial delays into message transmissions between agents. Analysis of the simulation results suggests that the various functions of the system exhibit two main modes of sensitivity to communication failures. In one mode, exhibited in searching the environment and discovering targets, performance gains associated with a high level of communication availability are relatively small. Performance did not continue to drop with the introduction of further communication failures, indicating a robustness to communication failures. The other mode, observed in target tracking and hostile destruction performance, exhibits a negative correlation with increasing communication delays. The magnitude of the effect of communication delays is also significantly impacted by the connectivity of the network topology, with lower connectivity topologies amplifying the negative correlation. Data collected through this experiment provided insight into the characteristics of an ideal minimum level of communication. In addition, the trade-offs between performance in different aspects of the system as well as the optimal allocation of communication resources were considered. This work also investigated the potential for the operator to mitigate performance losses incurred due to communication degradation through more frequent replanning. However, no evidence was found which supported this possibility. Although these results represent preliminary research into the effect of degraded communication on a complex autonomous system, they provide valuable principals to consider when designing future UASs.
This is a book that covers different aspects of UAV technology, including design and development, applications, security and communication, and legal and regulatory challenges. The book is divided into 13 chapters, grouped into four parts. The first part discusses the design and development of UAVs, including ROS customization, structured designs, and intelligent trajectory tracking. The second part explores diverse applications such as search and rescue, monitoring distributed parameter systems, and leveraging drone technology in accounting. The third part focuses on security and communication challenges, including security concerns, multi-UAV systems, and communications security. The final part delves into the legal and regulatory challenges of integrating UAVs into non-segregated airspace. The book serves as a valuable resource for researchers, practitioners, and students in the field of unmanned aerial vehicles, providing a comprehensive understanding of UAV technology and its applications.
Over 3,800 total pages ... Just a sample of the studies / publications included: Drone Swarms Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications Countering A2/AD with Swarming Stunning Swarms: An Airpower Alternative to Collateral Damage Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms Break the Kill Chain, not the Budget: How to Avoid U.S. Strategic Retrenchment Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft Human Robotic Swarm Interaction Using an Artificial Physics Approach Swarming UAS II Swarming Unmanned Aircraft Systems Communication Free Robot Swarming UAV Swarm Attack: Protection System Alternatives for Destroyers Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm UAV Swarm Behavior Modeling for Early Exposure of Failure Modes Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study UAV Swarm Operational Risk Assessment System SmartSwarms: Distributed UAVs that Think Command and Control Autonomous UxV's UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission Accelerating the Kill Chain via Future Unmanned Aircraft Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles AFIT UAV Swarm Mission Planning and Simulation System A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles Braving the Swarm: Lowering Anticipated Group Bias in Integrated Fire/Police Units Facing Paramilitary Terrorism Distributed Beamforming in a Swarm UAV Network Integrating UAS Flocking Operations with Formation Drag Reduction Tracking with a Cooperatively Controlled Swarm of GMTI Equipped UAVS Using Agent-Based Modeling to Evaluate UAS Behaviors in a Target-Rich Environment Experimental Analysis of Integration of Tactical Unmanned Aerial Vehicles and Naval Special Warfare Operations Forces Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles Architectural Considerations for Single Operator Management of Multiple Unmanned Aerial Vehicles
An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in the area of cooperative systems, cooperative control and optimization particularly in the aerospace industry.
Unmanned aerial systems (UAS) have received significant attention in recent years due to substantial advances in capabilities. The goal for this project has been to work with Drive Ohio and the OH UAS Center: (1) to identify those ODOT core business functions which can be improved/enhanced by application of UAS technologies, (2) to identify the corresponding necessary UAV system configurations and missions and (3) to begin developing, testing, and documenting vehicle system configurations and capabilities to perform these missions. In collaboration with ODOT, the following application areas were selected for in-depth investigation: Bridge and facility inspection, aerial mapping, construction monitoring, and traffic monitoring and management. Additional integrative, crosscutting technologies to support operations were also considered. A variety of UAS vehicle systems were acquired along with associated cameras and supporting hardware and software. In addition, custom hardware and software were developed for systems integration and operation, image processing and tele-remote UAV video streaming. Several hundred hours of flight operations were conducted at test sites as well as in actual ODOT field operational setting across the state of Ohio. The limits of UAS operations and applications in these areas were explored and documented. Based on the results obtained, a set of 7 Standard Operations Procedures (SOPs) were developed and delivered and associated training session were conducted. The research showed that UAS operations are poised to dramatically impact several areas, and that ODOT, through its UAS Center, is poised to capitalize on many of these trends leading to improved operational efficiency, increased safety and mobility, and reduced costs.