Download Free Development And Testing Of A Diesel Particulate Filter With An Electrical Regeneration Starting Module Book in PDF and EPUB Free Download. You can read online Development And Testing Of A Diesel Particulate Filter With An Electrical Regeneration Starting Module and write the review.

Particulate matter in the diesel exhaust is the dominant mobile source of cancer in the urban transport system. Diesel particulate filter (DPF) using a ceramic wall flow filter is the promising technology for abating particulate matter pollution. The mechanical durability of ceramic filter due to vehicle vibration, thermal durability during regeneration and efficient and economical regeneration systems are the major concerns for making this system viable. A novel system of DPF with simple and viable regeneration method suitable to Indian urban transport was developed and evaluated for performance by field testing. DPF was designed using wall flow filter made from highly thermal shock resistant cordierite honeycombs after optimizing the back pressure and engine power loss. The mechanical durability was measured after fitting DPF in a transport bus and running it for several cycles, accumulating with periodic regeneration more than 20,000 km and observed no deterioration of performance. An electrical regeneration system was designed with a practical regeneration interval of about a day using stationary power and pressurized air source. The back pressure, smoke density, temperature, fuel consumption were measured at each cycle of field test before and after regeneration to evaluate the thermal durability, filtration efficiency and regeneration performance. The developed DPF system showed an average 0.4 g/km collection of particulate matter without any appreciable loss of power and no significant increase in fuel consumption. The results obtained during the field test and, engine performance and emission data collected on engine test bed are discussed.
Until recently, the complexity of the Diesel Particulate Filter (DPF) system has hindered its commercial success. Stringent regulations of diesel emissions has lead to advancements in this technology, therefore mainstreaming the use of DPFs in light- and heavy-duty diesel filtration applications. This book covers the latest and most important research in DPF systems, focusing mainly on the advancements of the years 2002-2006. Editor Timothy V. Johnson selected the top 29 SAE papers covering the most significant research in this technology.
This thesis describes the development and application of an electric discharge for regenerating gelcast ceramic foam diesel particulate filters (DPF) for effective and efficient reduction of particulate matter (PM) emissions from diesel fuelled IC engines. The combustion in diesel compression ignition engines generates a number of unwanted by-products including PM. The PM from diesel engines is believed to be potentially carcinogenic when inhaled into the lungs and, therefore, needs to be controlled. Emission legislation has made it increasingly difficult for engineers to reduce PM emissions whilst meeting NOx targets by combustion optimisation alone, leading to the requirement for exhaust gas aftertreatment, most notably exhaust gas filtration. Filtration and regeneration (filter cleaning) technology must be robust, filter high amounts of PM, be compact, energy efficient and cost effective. A large number of published solutions do not meet all of these criteria. This research has developed a compact, efficient, robust and cost effective solution: The Autoselective regeneration of gelcast ceramic foam DPFs. Gelcast ceramic foam geometry can be optimised on a microscopic and macroscopic scale with a large number of material characteristics. This thesis develops and applies new methodology for rapid optimisation of gelcast ceramic foam DPFs. The optimum foam geometry is found to be highly application-dependent. Filters with >95% filtration efficiency and a low filtration volume have been demonstrated, although are limited in their PM mass holding capacity. It was found that filters with higher PM mass holding capacity require larger pore sizes and filtration volume. Design maps were produced to allow rapid optimisation of gel cast ceramic foams with a novel methodology that can be applied to all forms of deep bed filtration, saving both time and cost in future filter development. Investigation and optimisation of Autoselective regeneration demonstrated that the regeneration system is most effective when the electric discharge is active within the filter volume. Using modelling and novel methods for measuring heat flux from electrical discharges, thermal optimisation of the heat flows in the system were achieved. Rig tests increased the robustness of the regeneration system and developed profiled mesh electrodes to maximise the effective regeneration volume. An engine test programme demonstrated regeneration effectiveness of -12 g kW·1 h-I which is equivalent to -333 W for a typical 56 kW heavy duty diesel engine. Alternatives such as fuel burners and electrical resistance heaters typically consume between I and 5 kW of fuel energy for filter regeneration. Multiple electrode prototypes are presented and evaluated for efficient and effective on-engine and on-vehicle PM control.
This paper presents a novel approach of particulate material (soot) measurement in a Diesel particulate filter using Electrical Capacitance Tomography. Modern Diesel Engines are equipped with Diesel Particulate Filters (DPF), as well as on-board technologies to evaluate the status of DPF because complete knowledge of DPF soot loading is very critical for robust efficient operation of the engine exhaust after treatment system. Emission regulations imposed upon all internal combustion engines including Diesel engines on gaseous as well as particulates (soot) emissions by Environment Regulatory Agencies. In course of time, soot will be deposited inside the DPFs which tend to clog the filter and hence generate a back pressure in the exhaust system, negatively impacting the fuel efficiency. To remove the soot build-up, regeneration of the DPF must be done as an engine exhaust after treatment process at pre-determined time intervals. Passive regeneration use exhaust heat and catalyst to burn the deposited soot but active regeneration use external energy in such as injection of diesel into an upstream DOC to burn the soot. Since the regeneration process consume fuel, a robust and efficient operation based on accurate knowledge of the particulate matter deposit (or soot load)becomes essential in order to keep the fuel consumption at a minimum. In this paper, we propose a sensing method for a DPF that can accurately measure in-situ soot load using Electrical Capacitance Tomography (ECT). Simulation results show that the proposed method offers an effective way to accurately estimate the soot load in DPF. The proposed method is expected to have a profound impact in improving overall PM filtering efficiency (and thereby fuel efficiency), and durability of a Diesel Particulate Filter (DPF) through appropriate closed loop regeneration operation.