Download Free Development And Application Of Micropatterned Lipid Bilayer Arrays Using Fluorescence Microscopy And Sum Frequency Vibrational Imaging Book in PDF and EPUB Free Download. You can read online Development And Application Of Micropatterned Lipid Bilayer Arrays Using Fluorescence Microscopy And Sum Frequency Vibrational Imaging and write the review.

The term biomimetic is comparatively new on the chemical scene, but the concept has been utilized by chemists for many years. Furthermore, the basic idea of making a synthetic material that can imitate the func tions of natural materials probably could be traced back into antiquity. From the dawn of creation, people have probably attempted to duplicate or modify the activities of the natural world. (One can even find allusions to these attempts in the Bible; e. g. , Genesis 30. ) The term "mimetic" means to imitate or mimic. The word "mimic" means to copy closely, or to imitate accurately. Biomimetic, which has not yet entered most dictionaries, means to imitate or mimic some specific bio logical function. Usually, the objective of biomimetics is to form some useful material without the need of utilizing living systems. In a simi lar manner, the term biomimetic polymers means creating synthetic poly mers which imitate the activity of natural bioactive polymers. This is a major advance in polymer chemistry because the natural bioactive polymers are the basis of life itself. Thus, biomimetic polymers imitate the life process in many ways. This present volume delineates some of the recent progress being made in this vast field of biomimetic polymers. Chemists have been making biomimetic polymers for more than fifty years, although this term wasn't used in the early investigations.
This revised second edition is improved linguistically with multiple increases of the number of figures and the inclusion of several novel chapters such as actin filaments during matrix invasion, microtubuli during migration and matrix invasion, nuclear deformability during migration and matrix invasion, and the active role of the tumor stroma in regulating cell invasion.
This book is about the importance of water in determining the structure, stability and responsive behavior of biological membranes. Water confers to lipid membranes unique features in terms of surface and mechanical properties. The analysis of the hydration forces, plasticiser effects, controlled hydration, formation of microdomains of confined water suggests that water is an active constituent in a water-lipid system. The chapters describe water organization at the lipid membrane–water interphase, the water penetration, the long range water structure in the presence of lipid membranes by means of X-ray and neutron scattering, general polarization, fluorescent probes, ATR-FTIR and near infrared spectroscopies, piezo electric methods, computer simulation and surface thermodynamics. Permeation, percolation, osmotic stress, polarization, protrusion, sorption, hydrophobicity, density fluctuations are treated in detail in self-assembled bilayers. Studies in lipid monolayers show the correlation of surface pressure with water activity and its role in peptide and enzyme interactions. The book concludes with a discussion on anhydrobiosis and the effect of water replacement in microdomains and its consequence for cell function. New definitions of lipid/water interphases consider water not only as a structural-making solvent but as a mediator in signalling metabolic activity, modulating protein insertion and enzymatic activity, triggering oscillatory reactions and functioning of membrane bound receptors. Since these effects occur at the molecular level, membrane hydration appears fundamental to understand the behavior of nano systems and confined environments mimicking biological systems. These insights in structural, thermodynamical and mechanical water properties give a base for new paradigms in membrane structure and function for those interested in biophysics, physical chemistry, biology, bio and nano medicine, biochemistry, biotechnology and nano sciences searching for biotechnological inputs in human health, food industry, plant growing and energy conversion.
Surface-Enhanced Raman Spectroscopy: Principles, Experiments, and Applications is a comprehensive, up to date, and balanced treatment of the theoretical and practical aspects of Surface-Enhanced Raman Scattering (SERS), a useful branch of spectroscopy for several areas of science. This book describes the basic principles of SERS, including SERS mechanisms, performing SERS measurements, and interpreting data. Also emphasized are applications in electrochemistry; catalysis; surface processing and corrosion; Self-Assemble-Layer and L-B Films; polymer science; biology; medicine and drug analysis; sensors; fuel cells; forensics; and archaeology. It is an essential guide for student and professional analytical chemists.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices with applications to Genomics and Proteomics. Topics include gene expression profiling utilizing microarray technology; imaging and sensing for gene detection and use in DNA analysis; and coverage of advanced microfluidic devices and the Humane Genome Project.
Paras Prasad’s text provides a basic knowledge of a broad range of topics so that individuals in all disciplines can rapidly acquire the minimal necessary background for research and development in biophotonics. Introduction to Biophotonics serves as both a textbook for education and training as well as a reference book that aids research and development of those areas integrating light, photonics, and biological systems. Each chapter contains a topic introduction, a review of key data, and description of future directions for technical innovation. Introduction to Biophotonics covers the basic principles of Optics Optical spectroscopy Microscopy Each section also includes illustrated examples and review questions to test and advance the reader’s knowledge. Sections on biosensors and chemosensors, important tools for combating biological and chemical terrorism, will be of particular interest to professionals in toxicology and other environmental disciplines. Introduction to Biophotonics proves a valuable reference for graduate students and researchers in engineering, chemistry, and the life sciences.
Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.
Chemical sensors are in high demand for applications as varied as water pollution detection, medical diagnostics, and battlefield air analysis. Designing the next generation of sensors requires an interdisciplinary approach. The book provides a critical analysis of new opportunities in sensor materials research that have been opened up with the use of combinatorial and high-throughput technologies, with emphasis on experimental techniques. For a view of component selection with a more computational perspective, readers may refer to the complementary volume of Integrated Analytical Systems edited by M. Ryan et al., entitled “Computational Methods for Sensor Material Selection”.
Marine organisms have been under research for the last decades as a source for different active compounds with various biological activities and application in agriculture, pharmacy, medicine, environment, and industries. Marine polysaccharides from these active compounds are used as antibacterial, antiviral, antioxidant, anti-inflammation, bioremediations, etc. During the last three decades, several important factors that control the production of phytoplankton polysaccharides have been identified such as chemical concentrations, temperature, light, etc. The current book includes 14 chapters contributed by experts around the world; the chapters are categorized into three sections: Marine Polysaccharides and Agriculture, Marine Polysaccharides and Biological Activities, and Marine Polysaccharides and Industries.