Download Free Developing New Imaging Biomarkers In Multiple Sclerosis Book in PDF and EPUB Free Download. You can read online Developing New Imaging Biomarkers In Multiple Sclerosis and write the review.

This is the first book to cover all aspects of the development of imaging biomarkers and their integration into clinical practice, from the conceptual basis through to the technical aspects that need to be considered in order to ensure that medical imaging can serve as a powerful quantification instrument capable of providing valuable information on organ and tissue properties. The process of imaging biomarker development is considered step by step, covering proof of concept, proof of mechanism, image acquisition, image preparation, imaging biomarker analysis and measurement, detection of measurement biases (proof of principle), proof of efficacy and effectiveness, and reporting of results. Sources of uncertainty in the accuracy and precision of measurements and pearls and pitfalls in gold standards and biological correlation are discussed. In addition, practical use cases are included on imaging biomarker implementation in brain, oncologic, cardiovascular, musculoskeletal, and abdominal diseases. The authors are a multidisciplinary team of expert radiologists and engineers, and the book will be of value to all with an interest in the quantitative imaging of biomarkers in personalized medicine.
Quantitative Magnetic Resonance Imaging is a ‘go-to’ reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: The basic physics behind tissue property mapping How to implement basic pulse sequences for the quantitative measurement of tissue properties The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* The pros and cons for different approaches to mapping perfusion The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor maps and more complex representations of diffusion How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance Fingerprinting can be used to accelerate or improve tissue property mapping schemes How tissue property mapping is used clinically in different organs Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
In this issue of Neuroimaging Clinics, guest editors Drs. Frederik Barkhof and Yaou Liu bring their considerable expertise to the topic of Multiple Sclerosis and Associated Demyelinating Disorders. Top experts in the field discuss advanced brain imaging in CNS demyelinating diseases; new imaging markers in MS and related disorders: smoldering inflammation and central vein sign; the use of AI in MS and white matter disease; optic nerve imaging in MS and related disorders; atypical demyelinating disorders; and more. Co-Editor Frederik Barkhof, MD, has received the National Multiple Sclerosis Society and the American Academy of Neurology’s 2018 John Dystel Prize for Multiple Sclerosis Research for his many years of outstanding research in the field of MS, especially in advancing the understanding and clinical use of brain imaging. Contains 12 relevant, practice-oriented topics including diagnostic criteria for MS, NMOSD and MOGAD; routine MRI protocol and standardization in CNS demyelinating diseases; spinal cord imaging in MS and related disorders; treatment monitoring in MS: efficacy and safety; cognitive impairment in MS and related disorders; and more. Provides in-depth clinical reviews on multiple sclerosis and associated demyelinating disorders, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.
Written by world-renowned scientists, the volume provides a state-of-the-art on the most recent MRI techniques related to MS, and it is an indispensable tool for all those working in this field. The context in which this book exists is that there is an increasing perception that modern MR methodologies should be more extensively employed in clinical trials to derive innovative information.
Discover how biomarkers can boost the success rate of drug development efforts As pharmaceutical companies struggle to improve the success rate and cost-effectiveness of the drug development process, biomarkers have emerged as a valuable tool. This book synthesizes and reviews the latest efforts to identify, develop, and integrate biomarkers as a key strategy in translational medicine and the drug development process. Filled with case studies, the book demonstrates how biomarkers can improve drug development timelines, lower costs, facilitate better compound selection, reduce late-stage attrition, and open the door to personalized medicine. Biomarkers in Drug Development is divided into eight parts: Part One offers an overview of biomarkers and their role in drug development. Part Two highlights important technologies to help researchers identify new biomarkers. Part Three examines the characterization and validation process for both drugs and diagnostics, and provides practical advice on appropriate statistical methods to ensure that biomarkers fulfill their intended purpose. Parts Four through Six examine the application of biomarkers in discovery, preclinical safety assessment, clinical trials, and translational medicine. Part Seven focuses on lessons learned and the practical aspects of implementing biomarkers in drug development programs. Part Eight explores future trends and issues, including data integration, personalized medicine, and ethical concerns. Each of the thirty-eight chapters was contributed by one or more leading experts, including scientists from biotechnology and pharmaceutical firms, academia, and the U.S. Food and Drug Administration. Their contributions offer pharmaceutical and clinical researchers the most up-to-date understanding of the strategies used for and applications of biomarkers in drug development.