Download Free Developing Essential Understanding Of Statistics For Teaching Mathematics In Grades 9 12 Book in PDF and EPUB Free Download. You can read online Developing Essential Understanding Of Statistics For Teaching Mathematics In Grades 9 12 and write the review.

Are sequences functions? Why can’t the popular “vertical line test” be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? How much do you know… and how much do you need to know? Helping your high school students develop a robust understanding of functions requires that you understand mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to functions, this book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
How does a statistical model differ from a mathematical model? What are the differences among the sample distribution, the sampling distribution, and the population distribution? In an experiment, what effect does the sampling method have on the results? What are the implications of the use of processes of random selection and random assignment? Can a small sample yield accurate estimates of population parameters? This book examines five big ideas and twenty-four related essential understandings for teaching statistics in grades 9–12. The authors distinguish mathematical and statistical models, explore distributions as descriptions of variability in data, focus on the fundamentals of testing hypotheses to draw conclusions from data, highlight the importance of the data collection method, and recognise the need to examine bias, precision, and sampling method in evaluating statistical estimators. Recognising that analysing data is an important part of understanding the world, the authors discuss the growth of students’ ideas about statistics and examine challenges to teaching, learning, and assessment. They intersperse their discussion with questions for teachers’ reflection.
How does working with data in statistics differ from working with numbers in mathematics? What is variability, and how can we describe and measure it? How can we display distributions of quantitative or categorical data? What is a data sample, and how can we choose one that will allow us to draw valid conclusions from data? How much do you know? and how much do you need to know? Helping your students develop a robust understanding of statistics requires that you understand fundamental statistical concepts deeply. But what does that mean? This book focuses on essential knowledge for mathematics teachers about statistics. It is organised around four big ideas, supported by multiple smaller, interconnected ideas. Taking you beyond a simple introduction to statistics, the book will broaden and deepen your understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
Why does it matter whether we state definitions carefully when we all know what particular geometric figures look like? What does it mean to say that a reflection is a transformation—a function? How does the study of transformations and matrices in high school connect with later work with vector spaces in linear algebra? How much do you know… and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organised around four big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently. Move beyond the mathematics you expect your students to learn. Students who fail to get a solid grounding in pivotal concepts struggle in subsequent work in mathematics and related disciplines. By bringing a deeper understanding to your teaching, you can help students who don’t get it the first time by presenting the mathematics in multiple ways. The Essential Understanding Series addresses topics in school mathematics that are critical to the mathematical development of students but are often difficult to teach. Each book in the series gives an overview of the topic, highlights the differences between what teachers and students need to know, examines the big ideas and related essential understandings, reconsiders the ideas presented in light of connections with other mathematical ideas, and includes questions for readers’ reflection.
"A series for teaching mathematics."--P. [1] of cover.
Why do some equations have one solution, others two or even more solutions and some no solutions? Why do we sometimes need to ""switch"" the direction of an inequality symbol in solving an inequality? What could you say if a student described a function as an equation? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of expressions, equations and functions requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about expressions, equations and functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas - essential understandings. Taking you beyond a simple introduction to expressions, equations and functions, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students - and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
Why are there so many formulas for area and volume, and why do some of them look alike? Why does one quadrilateral have no special name while another has several, like square, rectangle, rhombus, and parallelogram—and why are all these names useful? How much do you know … and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organized around four big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic.
What is the relationship between addition and subtraction? How do you know whether an algorithm will always work? Can you explain why order matters in subraction but not in addition or why it is false to assert that the sum of any two whole numbers is greater than either number? It is organised around two big ideas and supported by smaller, more specific, interconnected ideas (essential understandings). Gaining an understanding about addition and subtraction is essential as they are the foundation for students’ later learning of multiplication and division. Essential Understanding Series topics include: Number and Numeration for Grades Pre-K-2 Addition and Subtraction for Grades Pre-K-2 Geometry for Grades Pre-K-2 Reasoning and Proof for Grades Pre-K-8 Multiplication and Division for Grades 3-5 Rational Numbers for Grades 3-5 Algebraic Ideas and Readiness for Grades 3-5 Geometric Shapes and Solids for Grades 3-5 Ratio, Proportion and Proportionality for Grades 6-8 Expressions and Equations for Grades 6-8 Measurement for Grades 6-8 Data Analysis and Statistics for Grades 6-8 Function for Grades 9-12 Geometric Relationships for Grades 9-12 Reasoning and Proof for Grades 9-12 Statistics for Grades 9-12
How do composing and decomposing numbers connect with the properties of addition? Focus on the ideas that you need to thoroughly understand in order to teach with confidence. The mathematical content of this book focuses on essential knowledge for teachers about numbers and number systems. It is organised around one big idea and supported by smaller, more specific, interconnected ideas (essential understandings). Gaining this understanding is essential because numbers and numeration are building blocks for other mathematical concepts and for thinking quantitatively about the real-world. Essential Understanding series topics include: Number and Numeration for Grades Pre-K-2 Addition and Subtraction for Grades Pre-K-2 Geometry for Grades Pre-K-2 Reasoning and Proof for Grades Pre-K-8 Multiplication and Division for Grades 3-5 Rational Numbers for Grades 3-5 Algebraic Ideas and Readiness for Grades 3-5 Geometric Shapes and Solids for Grades 3-5 Ratio, Proportion and Proportionality for Grades 6-8 Expressions and Equations for Grades 6-8 Measurement for Grades 6-8 Data Analysis and Statistics for Grades 6-8 Function for Grades 9-12 Geometric Relationships for Grades 9-12 Reasoning and Proof for Grades 9-12 Statistics for Grades 9-12
Teaching Mathematics in Grades 6 - 12 by Randall E. Groth explores how research in mathematics education can inform teaching practice in grades 6-12. The author shows preservice mathematics teachers the value of being a "researcher—constantly experimenting with methods for developing students' mathematical thinking—and connecting this research to practices that enhance students' understanding of the material. Ultimately, preservice teachers will gain a deeper understanding of the types of mathematical knowledge students bring to school, and how students' thinking may develop in response to different teaching strategies.