Download Free Developing Essential Understanding Of Expressions Equations And Functions For Teaching Mathematics In Grades 6 8 Book in PDF and EPUB Free Download. You can read online Developing Essential Understanding Of Expressions Equations And Functions For Teaching Mathematics In Grades 6 8 and write the review.

Why do some equations have one solution, others two or even more solutions and some no solutions? Why do we sometimes need to ""switch"" the direction of an inequality symbol in solving an inequality? What could you say if a student described a function as an equation? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of expressions, equations and functions requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about expressions, equations and functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas - essential understandings. Taking you beyond a simple introduction to expressions, equations and functions, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students - and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
Are sequences functions? Why can’t the popular “vertical line test” be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? How much do you know… and how much do you need to know? Helping your high school students develop a robust understanding of functions requires that you understand mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to functions, this book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
"A series for teaching mathematics."--P. [1] of cover.
Why are there so many formulas for area and volume, and why do some of them look alike? Why does one quadrilateral have no special name while another has several, like square, rectangle, rhombus, and parallelogram—and why are all these names useful? How much do you know … and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organized around four big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic.
How does working with data in statistics differ from working with numbers in mathematics? What is variability, and how can we describe and measure it? How can we display distributions of quantitative or categorical data? What is a data sample, and how can we choose one that will allow us to draw valid conclusions from data? How much do you know? and how much do you need to know? Helping your students develop a robust understanding of statistics requires that you understand fundamental statistical concepts deeply. But what does that mean? This book focuses on essential knowledge for mathematics teachers about statistics. It is organised around four big ideas, supported by multiple smaller, interconnected ideas. Taking you beyond a simple introduction to statistics, the book will broaden and deepen your understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
How do your students determine whether a mathematical statement is true? Do they rely on a teacher, a textbook or various examples? How can you encourage them to connect examples, extend their ideas to new situations that they have not yet considered and reason more generally? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of mathematical reasoning requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about mathematical reasoning. It is organised around one big idea, supported by multiple smaller, interconnected ideas - essential understandings.Taking you beyond a simple introduction to mathematical reasoning, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
Like algebra at any level, early algebra is a way to explore, analyse, represent and generalise mathematical ideas and relationships. This book shows that children can and do engage in generalising about numbers and operations as their mathematical experiences expand. The authors identify and examine five big ideas and associated essential understandings for developing algebraic thinking in grades 3-5. The big ideas relate to the fundamental properties of number and operations, the use of the equals sign to represent equivalence, variables as efficient tools for representing mathematical ideas, quantitative reasoning as a way to understand mathematical relationships and functional thinking to generalise relationships between covarying quantities. The book examines challenges in teaching, learning and assessment and is interspersed with questions for teachers’ reflection.
How do composing and decomposing numbers connect with the properties of addition? Focus on the ideas that you need to thoroughly understand in order to teach with confidence. The mathematical content of this book focuses on essential knowledge for teachers about numbers and number systems. It is organised around one big idea and supported by smaller, more specific, interconnected ideas (essential understandings). Gaining this understanding is essential because numbers and numeration are building blocks for other mathematical concepts and for thinking quantitatively about the real-world. Essential Understanding series topics include: Number and Numeration for Grades Pre-K-2 Addition and Subtraction for Grades Pre-K-2 Geometry for Grades Pre-K-2 Reasoning and Proof for Grades Pre-K-8 Multiplication and Division for Grades 3-5 Rational Numbers for Grades 3-5 Algebraic Ideas and Readiness for Grades 3-5 Geometric Shapes and Solids for Grades 3-5 Ratio, Proportion and Proportionality for Grades 6-8 Expressions and Equations for Grades 6-8 Measurement for Grades 6-8 Data Analysis and Statistics for Grades 6-8 Function for Grades 9-12 Geometric Relationships for Grades 9-12 Reasoning and Proof for Grades 9-12 Statistics for Grades 9-12
What is the relationship between addition and subtraction? How do you know whether an algorithm will always work? Can you explain why order matters in subraction but not in addition or why it is false to assert that the sum of any two whole numbers is greater than either number? It is organised around two big ideas and supported by smaller, more specific, interconnected ideas (essential understandings). Gaining an understanding about addition and subtraction is essential as they are the foundation for students’ later learning of multiplication and division. Essential Understanding Series topics include: Number and Numeration for Grades Pre-K-2 Addition and Subtraction for Grades Pre-K-2 Geometry for Grades Pre-K-2 Reasoning and Proof for Grades Pre-K-8 Multiplication and Division for Grades 3-5 Rational Numbers for Grades 3-5 Algebraic Ideas and Readiness for Grades 3-5 Geometric Shapes and Solids for Grades 3-5 Ratio, Proportion and Proportionality for Grades 6-8 Expressions and Equations for Grades 6-8 Measurement for Grades 6-8 Data Analysis and Statistics for Grades 6-8 Function for Grades 9-12 Geometric Relationships for Grades 9-12 Reasoning and Proof for Grades 9-12 Statistics for Grades 9-12