Download Free Deterministic Lotsizing Models For Production Planning Book in PDF and EPUB Free Download. You can read online Deterministic Lotsizing Models For Production Planning and write the review.

This thesis deals with timing and sizing decisions for production lots, and more precisely, with mathematical models to support optimal tim ing and sizing decisions. These models are called lotsizing models. They are characterized by the fact that production lots are determined based on a trade-offbetween production costs and customer service. Production costs can be categorized as basic production costs, which consist of material costs, labour costs, machine startup costs and over head costs, and inventory related costs, which include costs of capital tied up in inventory, insurances and taxes. Customer service is the capability of the firm to deliver to their clients the products in the quantity they ordered at the agreed upon time and place. The costs of realizing a certain service level are usuaIly very dif ficult to convert into money. They include costs of expediting, loss of customer goodwill, and loss of sales revenues resulting from the short age situation.
This book is the outcome of my research in the field of multi levellot sizing and scheduling which started in May 1993 at the Christian-Albrechts-University of Kiel (Germany). During this time I discovered more and more interesting aspects ab out this subject and I had to learn that not every promising idea can be thoroughly evaluated by one person alone. Nevertheless, I am now in the position to present some results which are supposed to be useful for future endeavors. Since April 1995 the work was done with partial support from the research project no. Dr 170/4-1 from the "Deutsche For schungsgemeinschaft" (D FG). The remaining space in this preface shaH be dedicated to those who gave me valuable support: First, let me express my deep gratitude towards my thesis ad visor Prof. Dr. Andreas Drexl. He certainly is a very outstanding advisor. Without his steady suggestions, this work would not have come that far. Despite his scarce time capacities, he never rejected proof-reading draft versions of working papers, and he was always willing to discuss new ideas - the good as weH as the bad ones. He and Prof. Dr. Gerd Hansen refereed this thesis. I am in debted to both for their assessment. I am also owing something to Dr. Knut Haase. Since we al most never had the same opinion when discussing certain lot sizing aspects, his comments and criticism gave stimulating input.
Billions of dollars are tied up in the inventories of manufacturing companies which cause large (interest) costs. A small decrease of the inventory and/or production costs without reduction of the service level can increase the profit substantially. Especially in the case of scarce capacity, efficient production schedules are fundamental for short delivery time and on-time delivery which are important competitive priorities. To support decision makers by improving their manufacturing resource planning system with appropriate methods is one of the most of production planning. interesting challenges The following chapters contain new models and new solution strategies which may be helpful for decision makers and for further research in the areas of production planning and operations research. The main subject is on lotsizing and scheduling. The objectives and further characteristics of such problems can be inferred from practical need. Thus, before an outline is given, we consider the general objectives of lotsizing and scheduling and classify the most important characteristics of such problems in the following sections.
This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.
This book presents a comprehensive overview of recent developments in production planning. The monograph begins with an introductory chapter reviewing the need for these production planning models, that operate by determining time-phased releases of work into the facility or supply chain, relating these to the Manufacturing Planning and Control (MPC) and Advanced Planning and Scheduling (APS) frameworks, that form the basis of most academic research and industrial practice. The extensive body of work on Workload Control is also placed in this context, and proves the need for improved models with a discussion of the difficulties, these approaches encounter. The next two chapters present a detailed review of the state of the art in optimization models based on exogenous planned lead times, and examines the cases where these can take both integer and fractional values. The difficulties arising in estimating planned lead times are consistent with factory behavior which are highlighted, noting that many of these lead to non-convex optimization models. Attempts to address these difficulties by iterative multimodel approaches, that combine simulation and mathematical programming, are also discussed in detail. The next three chapters of the volume address the set of techniques developed using clearing functions, which represent the expected output of a resource in a planning period, as a function of the expected workload of the resource, during that period. The chapters on this subject propose a basic optimization model for multiple products, discuss the difficulties of this model and some possible solutions. It also reviews prior work, and discuss a number of alternative formulations of the clearing function concept with their respective advantages and disadvantages. Applications to lot sizing decisions and a number of other specific problems are also described. This volume concludes with an assessment of the state of the art described in the volume, and several directions for future work.
This textbook provides a comprehensive modeling, reformulation and optimization approach for solving production planning and supply chain planning problems, covering topics from a basic introduction to planning systems, mixed integer programming (MIP) models and algorithms through the advanced description of mathematical results in polyhedral combinatorics required to solve these problems. Based on twenty years worth of research in which the authors have played a significant role, the book addresses real life industrial production planning problems (involving complex production structures with multiple production stages) using MIP modeling and reformulation approach. The book provides an introduction to MIP modeling and to planning systems, a unique collection of reformulation results, and an easy to use problem-solving library. This approach is demonstrated through a series of real life case studies, exercises and detailed illustrations. Review by Jakub Marecek (Computer Journal) The emphasis put on mixed integer rounding and mixing sets, heuristics in-built in general purpose integer programming solvers, as well as on decompositions and heuristics using integer programming should be praised... There is no doubt that this volume offers the present best introduction to integer programming formulations of lotsizing problems, encountered in production planning. (2007)
​Due to a varying product demand (changing product mix) and different production speeds, bottlenecks may shift between the stages. In that case, a simultaneous lot-sizing and scheduling of these stages is recommendable. Hence, an improved version of the General Lot-Sizing and Scheduling Problem for Multiple production Stages (GLSPMS) was developed. Moreover, several reformulation techniques were applied to this model to solve it exactly. Besides, a new meta-heuristic which combines the principles of Variable Neighborhood Decomposition Search (VNDS) and Exchange was implemented to find good solutions, even for a real-world problem case. Finally, further model extensions, e.g., for scarce setup resources, were proposed.
Companies frequently operate in an uncertain environment and many real life production planning problems imply volatility and stochastics of the customer demands. Thereby, the determination of the lot-sizes and the production periods significantly affects the profitability of a manufacturing company and the service offered to the customers. This thesis provides practice-oriented formulations and variants of dynamic lot-sizing problems in presence of restricted production resources and demand uncertainty. The demand fulfillment is regulated by service level constraints. Additionally, integrated production and remanufacturing planning under demand and return uncertainty in closed-loop supply chains is addressed. This book offers introductions to these problems and presents approximation models that can be applied under uncertainty. Comprehensive numerical studies provide managerial implications. The book is written for practitioners interested in supply chain management and production as well as for lecturers and students in business studies with a focus on supply chain management and operations management.
This proceedings volume contains selected and refereed contributions that were presented at the conference on "Recent Developments and New Perspectives of Operations Research in the Area of Production Planning and Control" in Hagen/Germany, 25. - 26. June 1992. This conference was organized with the cooperation of the FernuniversiHit Hagen and was jointly hosted by the "Deutsche Gesellschaft fur Operations Research (DGOR)" and the "Manufacturing Special Interest Group of the Operations Research Society of America (ORSA-SIGMA)". For the organization of the conference we received generous financial support from the sponsors listed at the end of this volume. We wish to express our appreciation to all supporters for their contributions. This conference was the successor of the JOInt ORSA/DGOR-conference in Gaithersburg/Maryland, USA, on the 30. and 31. July 1991. Both OR-societies committed themselves in 1989 to host joint conferences on special topics of interest from the field of operations research. This goal has been successfully realized in the area of production management; and it should be an incentive to conduct similar joint conferences on other topics of operations research in the years to come. The 36 contributions in this proceedings volume deal with general and special problems in production planning as well as approaches and algorithms for their solution. They cover a wide range of operations research within product management and will therefore address a wide circle of interested readers among OR-scientists and professionals alike.