Download Free Deterministic And Stochastic Topics In Computational Finance Book in PDF and EPUB Free Download. You can read online Deterministic And Stochastic Topics In Computational Finance and write the review.

What distinguishes this book from other texts on mathematical finance is the use of both probabilistic and PDEs tools to price derivatives for both constant and stochastic volatility models, by which the reader has the advantage of computing explicitly a large number of prices for European, American and Asian derivatives.The book presents continuous time models for financial markets, starting from classical models such as Black-Scholes and evolving towards the most popular models today such as Heston and VAR.A key feature of the textbook is the large number of exercises, mostly solved, which are designed to help the reader to understand the material.The book is based on the author's lectures on topics on computational finance for senior and graduate students, delivered in USA (Princeton University and EMU), Taiwan and Kuwait. The prerequisites are an introductory course in stochastic calculus, as well as the usual calculus sequence.The book is addressed to undergraduate and graduate students in Masters of Finance programs as well as to those who wish to become more efficient in their practical applications.Topics covered:
Readership: Undergraduates and researchers in probability and statistics; applied, pure and financial mathematics; economics; chaos.
Computational finance is an interdisciplinary field which joins financial mathematics, stochastics, numerics and scientific computing. Its task is to estimate as accurately and efficiently as possible the risks that financial instruments generate. This volume consists of a series of cutting-edge surveys of recent developments in the field written by leading international experts. These make the subject accessible to a wide readership in academia and financial businesses. The book consists of 13 chapters divided into 3 parts: foundations, algorithms and applications. Besides surveys of existing results, the book contains many new previously unpublished results.
Most branches of science involving random fluctuations can be approached by Stochastic Calculus. These include, but are not limited to, signal processing, noise filtering, stochastic control, optimal stopping, electrical circuits, financial markets, molecular chemistry, population dynamics, etc. All these applications assume a strong mathematical background, which in general takes a long time to develop. Stochastic Calculus is not an easy to grasp theory, and in general, requires acquaintance with the probability, analysis and measure theory.The goal of this book is to present Stochastic Calculus at an introductory level and not at its maximum mathematical detail. The author's goal was to capture as much as possible the spirit of elementary deterministic Calculus, at which students have been already exposed. This assumes a presentation that mimics similar properties of deterministic Calculus, which facilitates understanding of more complicated topics of Stochastic Calculus.The second edition contains several new features that improved the first edition both qualitatively and quantitatively. First, two more chapters have been added, Chapter 12 and Chapter 13, dealing with applications of stochastic processes in Electrochemistry and global optimization methods.This edition contains also a final chapter material containing fully solved review problems and provides solutions, or at least valuable hints, to all proposed problems. The present edition contains a total of about 250 exercises.This edition has also improved presentation from the first edition in several chapters, including new material.
This book is a comprehensive exploration of the interplay between Stochastic Analysis, Geometry, and Partial Differential Equations (PDEs). It aims to investigate the influence of geometry on diffusions induced by underlying structures, such as Riemannian or sub-Riemannian geometries, and examine the implications for solving problems in PDEs, mathematical finance, and related fields. The book aims to unify the relationships between PDEs, nonholonomic geometry, and stochastic processes, focusing on a specific condition shared by these areas known as the bracket-generating condition or Hörmander's condition. The main objectives of the book are:The intended audience for this book includes researchers and practitioners in mathematics, physics, and engineering, who are interested in stochastic techniques applied to geometry and PDEs, as well as their applications in mathematical finance and electrical circuits.
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.
Stochastic Finance: An Introduction with Market Examples presents an introduction to pricing and hedging in discrete and continuous time financial models without friction, emphasizing the complementarity of analytical and probabilistic methods. It demonstrates both the power and limitations of mathematical models in finance, covering the basics of finance and stochastic calculus, and builds up to special topics, such as options, derivatives, and credit default and jump processes. It details the techniques required to model the time evolution of risky assets. The book discusses a wide range of classical topics including Black–Scholes pricing, exotic and American options, term structure modeling and change of numéraire, as well as models with jumps. The author takes the approach adopted by mainstream mathematical finance in which the computation of fair prices is based on the absence of arbitrage hypothesis, therefore excluding riskless profit based on arbitrage opportunities and basic (buying low/selling high) trading. With 104 figures and simulations, along with about 20 examples based on actual market data, the book is targeted at the advanced undergraduate and graduate level, either as a course text or for self-study, in applied mathematics, financial engineering, and economics.
Rigorous mathematical finance relies strongly on two additional fields: optimal stopping and stochastic analysis. This book is the first one which presents not only main results in the mathematical finance but also these 'related topics' with all proofs and in a self-contained form. The book treats both discrete and continuous time mathematical finance. Some topics, such as Israeli (game) contingent claims, and several proofs have not appeared before in a self-contained book form. The book contains exercises with solutions at the end of it and it can be used for a yearlong advanced graduate course for mathematical students.
Many mathematical assumptions on which classical derivative pricing methods are based have come under scrutiny in recent years. The present volume offers an introduction to deterministic algorithms for the fast and accurate pricing of derivative contracts in modern finance. This unified, non-Monte-Carlo computational pricing methodology is capable of handling rather general classes of stochastic market models with jumps, including, in particular, all currently used Lévy and stochastic volatility models. It allows us e.g. to quantify model risk in computed prices on plain vanilla, as well as on various types of exotic contracts. The algorithms are developed in classical Black-Scholes markets, and then extended to market models based on multiscale stochastic volatility, to Lévy, additive and certain classes of Feller processes. This book is intended for graduate students and researchers, as well as for practitioners in the fields of quantitative finance and applied and computational mathematics with a solid background in mathematics, statistics or economics.​
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.