Download Free Determining Greenland Ice Sheet Sensitivity To Regional Climate Change Book in PDF and EPUB Free Download. You can read online Determining Greenland Ice Sheet Sensitivity To Regional Climate Change and write the review.

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
The evidence for the Little Ice Age, the most important fluctuation in global climate in historical times, is most dramatically represented by the advance of mountain glaciers in the sixteenth and seventeenth centuries and their retreat since about 1850. The effects on the landscape and the daily life of people have been particularly apparent in Norway and the Alps. This major book places an extensive body of material relating to Europe, in the form of documentary evidence of the history of the glaciers, their portrayal in paintings and maps, and measurements made by scientists and others, within a global perspective. It shows that the glacial history of mountain regions all over the world displays a similar pattern of climatic events. Furthermore, fluctuations on a comparable scale have occurred at intervals of a millennium or two throughout the last ten thousand years since the ice caps of North America and northwest Europe melted away. This is the first scholarly work devoted to the Little Ice Age, by an author whose research experience of the subject has been extensive. This book includes large numbers of maps, diagrams and photographs, many not published elsewhere, and very full bibliographies. It is a definitive work on the subject, and an excellent focus for the work of economic and social historians as well as glaciologists, climatologists, geographers, and specialists in mountain environment.
The climate record for the past 100,000 years clearly indicates that the climate system has undergone periodic-and often extreme-shifts, sometimes in as little as a decade or less. The causes of abrupt climate changes have not been clearly established, but the triggering of events is likely to be the result of multiple natural processes. Abrupt climate changes of the magnitude seen in the past would have far-reaching implications for human society and ecosystems, including major impacts on energy consumption and water supply demands. Could such a change happen again? Are human activities exacerbating the likelihood of abrupt climate change? What are the potential societal consequences of such a change? Abrupt Climate Change: Inevitable Surprises looks at the current scientific evidence and theoretical understanding to describe what is currently known about abrupt climate change, including patterns and magnitudes, mechanisms, and probability of occurrence. It identifies critical knowledge gaps concerning the potential for future abrupt changes, including those aspects of change most important to society and economies, and outlines a research strategy to close those gaps. Based on the best and most current research available, this book surveys the history of climate change and makes a series of specific recommendations for the future.
This book provides an overview of the current state of knowledge of Arctic ice shelves, ice islands and related features. Ice shelves are permanent areas of ice which float on the ocean surface while attached to the coast, and typically occur in very cold environments where perennial sea ice builds up to great thickness, and/or where glaciers flow off the land and are preserved on the ocean surface. These landscape features are relatively poorly studied in the Arctic, yet they are potentially highly sensitive indicators of climate change because they respond to changes in atmospheric, oceanic and glaciological conditions. Recent fracturing and breakup events of ice shelves in the Canadian High Arctic have attracted significant scientific and public attention, and produced large ice islands which may pose a risk to Arctic shipping and offshore infrastructure. Much has been published about Antarctic ice shelves, but to date there has not been a dedicated book about Arctic ice shelves or ice islands. This book fills that gap.
Cambridge, UK : Cambridge University Press, 1998.
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.
There is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.
How can we understand and rise to the environmental challenges of global change? One clear answer is to understand the science of global change, not solely in terms of the processes that control changes in climate and the composition of the atmosphere, but in how ecosystems and human society interact with these changes. In the last two decades of the twentieth century, a number of such research effortsâ€"supported by computer and satellite technologyâ€"have been launched. Yet many opportunities for integration remain unexploited, and many fundamental questions remain about the earth's capacity to support a growing human population. This volume encourages a renewed commitment to understanding global change and sets a direction for research in the decade ahead. Through case studies the book explores what can be learned from the lessons of the past 20 years and what are the outstanding scientific questions. Highlights include: Research imperatives and strategies for investigators in the areas of atmospheric chemistry, climate, ecosystem studies, and human dimensions of global change. The context of climate change, including lessons to be gleaned from paleoclimatology. Human responses toâ€"and forcing ofâ€"projected global change. This book offers a comprehensive overview of global change research to date and provides a framework for answering urgent questions.