Download Free Determination And Study Of The Cosmic Ray Composition Above 100 Tev Book in PDF and EPUB Free Download. You can read online Determination And Study Of The Cosmic Ray Composition Above 100 Tev and write the review.

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 1015 eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn't until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeV (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 1015 eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.
This revised edition provides an up-to-date summary of the field of ultra-high energy cosmic rays, dealing with their origin, propagation, and composition,. The authors reflect the enormous strides made since the first edition in the realm of experimental work, in particular the use of vastly improved, more sensitive and precise detectors. The level remains introductory and pedagogical, suitable for students and researchers interested in moving into this exciting field. Throughout the text, the authors focus on giving an introductory overview of the key physics issues, followed by a clear and concise description of experimental approaches and current results. Key Features: Updates the most coherent summary of the field available, with new text that provides the reader with clear historical context. Brand new discussion of contemporary space-based experiments and ideas for extending ground-based detectors. Completely new discussion of radio detection methods. Includes a new chapter on small to intermediate-scale anisotropy. Offers new sections on modern hadronic models and software packages to simulate showers.
Cosmic ray physics has recently attracted a great deal of attention from the high energy physics community because of the discovery of new sources and the advent of new techniques. The result of a series of lectures prepared for graduate students and postdoctoral researchers, this book is a general introduction to experimental techniques and results in the field of ultrahigh energy cosmic rays. It succinctly summarizes the rapidly developing field, and provides modern results that include data from newer detectors. Combining experiment and theory, the text explores the results of a single, easy-to-understand experiment to tie together various issues involved in the physics of ultrahigh energy cosmic rays.
Since the discovery of cosmic rays over one hundred years ago, many experiments have studied their properties. However, a definitive answer to the questions of where cosmic rays originate and how they are produced is still not known. Over the last several decades, a much more detailed understanding of high energy cosmic rays has begun to materialize. In particular, the cosmic-ray energy spectrum, with its transitions at 3 PeV (the "knee") and 3 EeV (the "ankle"), has been extensively investigated. Based on magnetic confinement arguments, it's generally believed that the energy range between the knee and ankle is where the transition from Galactic to extragalactic sources of cosmic rays. The ability to distinguish between high energy cosmic rays of different composition and study the relative mass abundances of cosmic rays in this transition region can provide invaluable insight in answering the open questions surrounding the origins of cosmic rays. This work focuses on measuring the composition-resolved cosmic-ray energy spectrum at and above the all-particle knee using one year of data collected by the IceCube Observatory. Sepcifically, we focus on making a two mass group spectrum measurement from 10^6.4 GeV to 10^7.8 GeV. The first mass group, referred to as the "light" mass group, is modeled using proton and helium cosmic rays, while the second, "heavy" mass group, is modeled using oxygen and iron cosmic rays. We observe a clear softening of the light spectrum near 3 PeV, while the energy spectrum for the heavy mass group follows a power-law like structure with a spectral index of ~2.7 throughout the entire energy range considered. The observed transition from a primarily light to a heavy-dominant spectrum takes place near 10^7.1 GeV. This feature is characteristic of a potential rigidity-dependent cutoff, or Peters cycle. The change in relative mass abundance could also indicate a possible transition in the source population of cosmic rays. In addition, a study to determine whether or not the light, heavy, or all-particle cosmic-ray energy spectra vary as a function of arrival direction is also presented. This marks the first time an analysis of this kind has been conducted using the IceCube Observatory. No statistically significant spectrum deviations were observed. The results from this analysis can be used to set a limit on the range of possible spectral deviations
Proceedings of the NATO Advanced Study Institute, Ettore Majorana Centre, Erice, Sicily, Italy, June 20-30, 1982
Ultra-high energy cosmic rays are particles of enormous energy -- greater than 1018 eV -- reaching Earth from still mysterious sources. In this thesis, we analyze data from the Pierre Auger Observatory, a giant cosmic ray detector located in Argentina, to derive information on the mass of ultra-high energy cosmic rays and on their hadronic interaction properties. The data show a change of cosmic ray mass composition as a function of energy. We perform a measurement of the proton-air inelastic cross section, yielding sinelp-air =501+24-23 stat+30 -35syst +30-32 composition mb, at an equivalent energy of 57 TeV in the center of mass of a proton-proton collision -- a range yet inaccessible to particle accelerators. The measured cross section is in good agreement with predictions from hadronic interaction models.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.
The proceedings present new results obtained from recent observations by the Haverah Park, Yakutsk, Fly's Eye and Akeno groups on the shape of the energy spectrum, the arrival direction (point source) and the nature of the most energetic cosmic rays. They also contain an in-depth discussion of the present status of observations on discrete sources at TeV and PeV energies. A detailed discussion of the physics problems related to the origin, acceleration mechanism and propagation of the most energetic cosmic rays in the galactic and extragalactic space is given in relation to observable features.