Download Free Detection Of Signals In Noise Book in PDF and EPUB Free Download. You can read online Detection Of Signals In Noise and write the review.

The Second Edition is an updated revision to the authors highly successful and widely used introduction to the principles and application of the statistical theory of signal detection. This book emphasizes those theories that have been found to be particularly useful in practice including principles applied to detection problems encountered in digital communications, radar, and sonar. Detection processing based upon the fast Fourier transform
This book contains a unified treatment of a class of problems of signal detection theory. This is the detection of signals in addi tive noise which is not required to have Gaussian probability den sity functions in its statistical description. For the most part the material developed here can be classified as belonging to the gen eral body of results of parametric theory. Thus the probability density functions of the observations are assumed to be known, at least to within a finite number of unknown parameters in a known functional form. Of course the focus is on noise which is not Gaussian; results for Gaussian noise in the problems treated here become special cases. The contents also form a bridge between the classical results of signal detection in Gaussian noise and those of nonparametric and robust signal detection, which are not con sidered in this book. Three canonical problems of signal detection in additive noise are covered here. These allow between them formulation of a range of specific detection problems arising in applications such as radar and sonar, binary signaling, and pattern recognition and classification. The simplest to state and perhaps the most widely studied of all is the problem of detecting a completely known deterministic signal in noise. Also considered here is the detection random non-deterministic signal in noise. Both of these situa of a tions may arise for observation processes of the low-pass type and also for processes of the band-pass type.
Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding, this text provides a clear introduction to the fundamentals of stochastic processes and their practical applications to random signals and noise. With worked examples, problems, and detailed appendices, Introduction to Random Signals and Noise gives the reader the knowledge to design optimum systems for effectively coping with unwanted signals. Key features: Considers a wide range of signals and noise, including analogue, discrete-time and bandpass signals in both time and frequency domains. Analyses the basics of digital signal detection using matched filtering, signal space representation and correlation receiver. Examines optimal filtering methods and their consequences. Presents a detailed discussion of the topic of Poisson processes and shot noise. An excellent resource for professional engineers developing communication systems, semiconductor devices, and audio and video equipment, this book is also ideal for senior undergraduate and graduate students in Electronic and Electrical Engineering.
First published in 1962.
This monograph contains a number of problems with signal detection theory, presenting a generalized observation model for signal detection problems. The model includes several interesting and common special cases, such as those describing additive noise, multiplicative noise and signal-dependent noise.
A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.
Increasing the noise immunity of complex signal processing systems is the main problem in various areas of signal processing. At the present time there are many books and periodical articles devoted to signal detection, but many important problems remain to be solved. New approaches to complex problems allow us not only to summarize investigations, but also to improve the quality of signal detection in noise. This book is devoted to fundamental problems in the generalized approach to signal processing in noise based on a seemingly abstract idea: the introduction of an additional noise source that does not carry any information about the signal in order to improve the qualitative performance of complex signal processing systems. Theoretical and experimental studies carried out by the author lead to the conclusion that the proposed generalized approach to signal processing in noise allows us to formulate a decision-making rule based on the determi nation of the jointly sufficient statistics of the mean and variance of the likelihood function (or functional). Classical and modern signal detection theories allow us to define only the sufficient statistic of the mean of the likelihood function (or functional). The presence of additional information about the statistical characteristics of the like lihood function (or functional) leads to better-quality signal detection in comparison with the optimal signal detection algorithms of classical and modern theories.
Non-Gaussian Signal Processing is a child of a technological push. It is evident that we are moving from an era of simple signal processing with relatively primitive electronic cir cuits to one in which digital processing systems, in a combined hardware-software configura. tion, are quite capable of implementing advanced mathematical and statistical procedures. Moreover, as these processing techniques become more sophisticated and powerful, the sharper resolution of the resulting system brings into question the classic distributional assumptions of Gaussianity for both noise and signal processes. This in turn opens the door to a fundamental reexamination of structure and inference methods for non-Gaussian sto chastic processes together with the application of such processes as models in the context of filtering, estimation, detection and signal extraction. Based on the premise that such a fun damental reexamination was timely, in 1981 the Office of Naval Research initiated a research effort in Non-Gaussian Signal Processing under the Selected Research Opportunities Program.
The purpose of this book is to introduce the reader to the basic theory of signal detection and estimation. It is assumed that the reader has a working knowledge of applied probabil ity and random processes such as that taught in a typical first-semester graduate engineering course on these subjects. This material is covered, for example, in the book by Wong (1983) in this series. More advanced concepts in these areas are introduced where needed, primarily in Chapters VI and VII, where continuous-time problems are treated. This book is adapted from a one-semester, second-tier graduate course taught at the University of Illinois. However, this material can also be used for a shorter or first-tier course by restricting coverage to Chapters I through V, which for the most part can be read with a background of only the basics of applied probability, including random vectors and conditional expectations. Sufficient background for the latter option is given for exam pIe in the book by Thomas (1986), also in this series.