Download Free Detection Of Nuclear Weapons And Materials Book in PDF and EPUB Free Download. You can read online Detection Of Nuclear Weapons And Materials and write the review.

In this study, CISAC tackles the technical dimensions of a longstanding controversy: To what extent could existing and plausibly attainable measures for transparency and monitoring make possible the verification of all nuclear weaponsâ€"strategic and nonstrategic, deployed and nondeployedâ€"plus the nuclear-explosive components and materials that are their essential ingredients? The committee's assessment of the technical and organizational possibilities suggests a more optimistic conclusion than most of those concerned with these issues might have expected.
At the request of Congress, this report presents findings and recommendations related to governance of the U.S. government's monitoring, detection, and verification (MDV) enterprise and offers findings and recommendations related to technical MDV capabilities and research, development, test, and evaluation efforts, focused in particular on the nuclear fuel cycle, nuclear test explosions, and arms control.
Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.
(1) How Does Detection Work?; Current Detection Technol.; (2) Advanced Technol.: Nanocomposite Scintillators; GADRAS: Gamma-Ray Spectrum Analysis Application Using Multiple Algorithms; Computer Modeling to Evaluate Detection Capability; L-3 CAARS: Low-Risk Dual-Energy Radiography System; SAIC CAARS: Higher-Risk, Higher-Benefit Dual-Energy Radiography System; AS&E CAARS: Using Backscattered X-Rays to Detect Dense Material; Muon Tomography; Analyzing a Nuclear Weapon with Nuclear Resonance Fluorescence; Detecting SNM at a Distance; (3) Signatures of Plutonium, Highly Enriched Uranium, and Nuclear Weapons; Detecting Signatures of a Nuclear Weapon or SNM; Evasion of Detection Technol. Illus.
Nuclear material changes its form and properties as it moves through the nuclear fuel cycle, from one facility to another. Each step of the fuel cycle or each use of the material will inevitably leave its mark. The science of determining the history of a sample of nuclear material through the study of these characteristics is known as nuclear forensics. While nuclear forensic analysis has normally been associated with investigations and prosecutions in the contextof trafficking of nuclear materials or nuclear terrorism, it had wider applications in in national security contexts, such as nuclear non-proliferation, disarmament, and arms control. The New Nuclear Forensics is the first book to give a definitive guide to this broader definition of nuclear forensic analysis. This book describes the various methods used in nuclear forensics, giving first a broad introduction to the process followed by details of relevant measurement techniques and procedures. In each case, the advantages and limitations are outlined. To put these methods in context, the book also recounts the history of the discipline anddescribes the diverse contemporary applications of nuclear forensics.
The making of policy for nuclear security requires a strong grasp of the associated technical matters. That grasp came naturally in the early decades of the nuclear era, when scientists and engineers were deeply engaged in policymaking. In more recent decades, the technical community has played a narrower role, one generally limited to implementing policies made by others. This narrower role has been accentuated by generational change in the technical community, as the scientists and engineers who conceived, built, and executed the programs that created the existing U.S. nuclear deterrent faded into history along with the long-term competition for technical improvements with the Soviet Union. There is thus today a clear need to impart to the new generation of nuclear policy experts the necessary technical context.That is the purpose of this paper. Specifically: to introduce a new generation of nuclear policy experts to the technical perspectives of a nuclear weapon designer, to explain the science and engineering of nuclear weapons for the policy generalist, to review the evolution of the U.S. approach to nuclear weapons design, to explain the main attributes of the existing U.S. nuclear stockpile, to explain the functions of the nuclear weapons complex, and how this all is integrated to sustain deterrence into the future.
The Global Nuclear Detection Architecture (GNDA) is described as a worldwide network of sensors, telecommunications, and personnel, with the supporting information exchanges, programs, and protocols that serve to detect, analyze, and report on nuclear and radiological materials that are out of regulatory control. The Domestic Nuclear Detection Office (DNDO), an office within the Department of Homeland Security (DHS), coordinates the development of the GNDA with its federal partners. Performance Metrics for the Global Nuclear Detection Architecture considers how to develop performance measures and quantitative metrics that can be used to evaluate the overall effectiveness and report on progress toward meeting the goals of the GNDA. According to this report, two critical components are needed to evaluate the effectiveness of the GNDA: a new strategic plan with outcome-based metrics and an analysis framework to enable assessment of outcome-based metrics. The GNDA is a complex system of systems meant to deter and detect attempts to unlawfully transport radiological or nuclear material. The recommendations of Performance Metrics for the Performance Metrics for the Global Nuclear Detection Architecture may be used to improve the GNDA strategic plan and the reporting of progress toward meeting its goals during subsequent review cycles.
Now in its second edition, Nuclear Forensic Analysis provides a multidisciplinary reference for forensic scientists, analytical and nuclear chemists, and nuclear physicists in one convenient source. The authors focus particularly on the chemical, physical, and nuclear aspects associated with the production or interrogation of a radioactive sample.