Download Free Detection Of Dna Damage Via Recruitment Of Dna Repair Proteins Book in PDF and EPUB Free Download. You can read online Detection Of Dna Damage Via Recruitment Of Dna Repair Proteins and write the review.

Stands as the most comprehensive guide to the subject-covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employe
DNA Repair and Cancer Therapy: Molecular Targets and Clinical Applications, Second Edition provides a comprehensive and timely reference that focuses on the translational and clinical use of DNA repair as a target area for the development of diagnostic biomarkers and the enhancement of cancer treatment. Experts on DNA repair proteins from all areas of cancer biology research take readers from bench research to new therapeutic approaches. This book provides a detailed discussion of combination therapies, in other words, how the inhibition of repair pathways can be coupled with chemotherapy, radiation, or DNA damaging drugs. Newer areas in this edition include the role of DNA repair in chemotherapy induced peripheral neuropathy, radiation DNA damage, Fanconi anemia cross-link repair, translesion DNA polymerases, BRCA1-BRCA2 pathway for HR and synthetic lethality, and mechanisms of resistance to clinical PARP inhibitors. - Provides a comprehensive overview of the basic and translational research in DNA repair as a cancer therapeutic target - Includes timely updates from the earlier edition, including Fanconi Anemia cross-link repair, translesion DNA polymerases, chemotherapy induced peripheral neuropathy, and many other new areas within DNA repair and cancer therapy - Saves academic, medical, and pharma researchers time by allowing them to quickly access the very latest details on DNA repair and cancer therapy - Assists researchers and research clinicians in understanding the importance of the breakthroughs that are contributing to advances in disease-specific research
RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational) and future prospects for RNA-based diagnostics and therapeutics. One of the core strengths of the book includes spectrum of disease-specific chapters from experts in the field highlighting RNA-based regulation in metabolic & neurodegenerative disorders, cancer, inflammatory disease, viral and bacterial infections. We hope the book helps researchers, students and clinicians appreciate the role of RNA-based regulation in genome regulation, aiding the development of useful biomarkers for prognosis, diagnosis, and novel RNA-based therapeutics. - Comprehensive information of non-canonical RNA-based genome regulation modulating human health and disease - Defines RNA classes with special emphasis on unexplored world of noncoding RNA at different hierarchies - Disease specific role of RNA - causal, prognostic, diagnostic and therapeutic - Features contributions from leading experts in the field
Epigenetics of Aging and Longevity provides an in-depth analysis of the epigenetic nature of aging and the role of epigenetic factors in mediating the link between early-life experiences and life-course health and aging. Chapters from leading international contributors explore the effect of adverse conditions in early-life that may result in disrupted epigenetic pathways, as well as the potential to correct these disrupted pathways via targeted therapeutic interventions. Intergenerational epigenetic inheritance, epigenetic drug discovery, and the role of epigenetic mechanisms in regulating specific age-associated illnesses—including cancer and cardiovascular, metabolic, and neurodegenerative diseases—are explored in detail. This book will help researchers in genomic medicine, epigenetics, and biogerontology better understand the epigenetic determinants of aging and longevity, and ultimately aid in developing therapeutics to extend the human life-span and treat age-related disease. - Offers a comprehensive overview of the epigenetic nature of aging, as well as the impact of epigenetic factors on longevity and regulating age-related disease - Provides readers with clinical and epidemiological evidence for the role of epigenetic mechanisms in mediating the link between early-life experiences, life-course health and aging trajectory - Applies current knowledge of epigenetic regulatory pathways towards developing therapeutic interventions for age-related diseases and extending the human lifespan
Cyclin Dependent Kinase 5 provides a comprehensive and up-to-date collection of reviews on the discovery, signaling mechanisms and functions of Cdk5, as well as the potential implication of Cdk5 in the treatment of neurodegenerative diseases. Since the identification of this unique member of the Cdk family, Cdk5 has emerged as one of the most important signal transduction mediators in the development, maintenance and fine-tuning of neuronal functions and networking. Further studies have revealed that Cdk5 is also associated with the regulation of neuronal survival during both developmental stages and in neurodegenerative diseases. These observations indicate that precise control of Cdk5 is essential for the regulation of neuronal survival. The pivotal role Cdk5 appears to play in both the regulation of neuronal survival and synaptic functions thus raises the interesting possibility that Cdk5 inhibitors may serve as therapeutic treatment for a number of neurodegenerative diseases.
The processes of DNA recombination and repair are vital to cell integrity - an error can lead to disease such as cancer. It is therefore a large and exciting area of research and is also taught on postgraduate and undergraduate courses. This book is not a comprehensive view of the field, but a selection of the issues currently at the forefront of knowledge.
An overview of the current systems biology-based knowledge and the experimental approaches for deciphering the biological basis of cancer.
DNA Repair Mechanisms is an account of the proceedings at a major international conference on DNA Repair Mechanisms held at Keystone, Colorado on February 1978. The conference discusses through plenary sessions the overall standpoint of DNA repair. The papers presented and other important documents, such as short summaries by the workshop session conveners, comprise this book. The compilation describes the opposing views, those that agree and dispute about certain topic areas. This book, divided into 15 parts, is arranged according to the proceedings in the conference. The plenary sessions are ...
Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability. - A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects - Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability - Contains applications of genome instability research and outcomes for human disease - Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair
Detection and analysis of DNA damage is of critical importance in a variety of biological disciplines studying apoptosis, cell cycle and cell di- sion, carcinogenesis, tumor growth, embryogenesis and aging, neu- degenerative and heart diseases, anticancer drug development, environmental and radiobiological research, and others. Individual cells within the same tissue or in cell culture may vary in the extent of their DNA damage and, consequently, can display different re- tions to it. These differences between individual cells in the same cell popu- tion are detected using in situ approaches. In situ is a Latin term meaning “on site” or “in place.” It is used to denote the processes occurring or detected in their place of origin. In mole- lar and cell biology this usually refers to undisrupted mounted cells or tissue sections. In that meaning “in situ” is used as part of the terms “in situ PCR,” “in situ transcription,” “in situ hybridization,” “in situ end labeling,” and “in situ ligation.” Sometimes the “in situ” term is applied at the subcellular level to cells disrupted in the process of analysis, for example, in the detection of specific sequences in chromosomes using fluorescent in situ hybridization (FISH). Historically, the term was used primarily in methods dealing with nucleic acids.