Download Free Detection Estimation And Modulation Theory Part Ii Book in PDF and EPUB Free Download. You can read online Detection Estimation And Modulation Theory Part Ii and write the review.

* Well-known authority, Dr. Van Trees updates array signal processing for today's technology * This is the most up-to-date and thorough treatment of the subject available * Written in the same accessible style as Van Tree's earlier classics, this completely new work covers all modern applications of array signal processing, from biomedicine to wireless communications.
Signal processing plays an important role in many diverse application areas, including radar, sonar, communications, seismology, radio astronomy, tomography, and communications. Now, by popular demand, acclaimed author Harry Van Trees' four-part encyclopedic treatment of signal processing is now collected into a set offering 25 years of information in a single source.
"For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Author Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.
Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.
Originally published in 1968, Harry Van Trees’s Detection, Estimation, and Modulation Theory, Part I is one of the great time-tested classics in the field of signal processing. Highly readable and practically organized, it is as imperative today for professionals, researchers, and students in optimum signal processing as it was over thirty years ago. The second edition is a thorough revision and expansion almost doubling the size of the first edition and accounting for the new developments thus making it again the most comprehensive and up-to-date treatment of the subject. With a wide range of applications such as radar, sonar, communications, seismology, biomedical engineering, and radar astronomy, among others, the important field of detection and estimation has rarely been given such expert treatment as it is here. Each chapter includes section summaries, realistic examples, and a large number of challenging problems that provide excellent study material. This volume which is Part I of a set of four volumes is the most important and widely used textbook and professional reference in the field.
- Band 1 (Nachdruck) des vierbändigen Werkes; insgesamt die umfassendste gegenwärtig erhältliche Abhandlung auf diesem Gebiet - anerkannter und bewährter Klassiker, verfaßt von einer der führenden Persönlichkeiten - in gut verständlichem Stil geschrieben und übersichtlich organisiert, mit Zusammenfassungen an den Kapitelenden, Beispielen und zahlreichen Übungsaufgaben - vorgestellte Theorie hat wichtige praktische Anwendungen, unter anderem in der Radar- und Sonartechnik, Nachrichtentechnik, Seismologie, Biomedizintechnik und Astronomie
The first comprehensive development of Bayesian Bounds for parameter estimation and nonlinear filtering/tracking Bayesian estimation plays a central role in many signal processing problems encountered in radar, sonar, communications, seismology, and medical diagnosis. There are often highly nonlinear problems for which analytic evaluation of the exact performance is intractable. A widely used technique is to find bounds on the performance of any estimator and compare the performance of various estimators to these bounds. This book provides a comprehensive overview of the state of the art in Bayesian Bounds. It addresses two related problems: the estimation of multiple parameters based on noisy measurements and the estimation of random processes, either continuous or discrete, based on noisy measurements. An extensive introductory chapter provides an overview of Bayesian estimation and the interrelationship and applicability of the various Bayesian Bounds for both static parameters and random processes. It provides the context for the collection of papers that are included. This book will serve as a comprehensive reference for engineers and statisticians interested in both theory and application. It is also suitable as a text for a graduate seminar or as a supplementary reference for an estimation theory course.
Fluorescence is the most popular technique in chemical and biological sensing and this book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Its ultimate sensitivity, high temporal and spatial resolution and versatility enables high resolution imaging within living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response, up to the detection of single molecules. Its application areas range from the control of industrial processes to environmental monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.