Download Free Detailed Characterization Of Heavy Crude Oils And Asphaltenes By Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Book in PDF and EPUB Free Download. You can read online Detailed Characterization Of Heavy Crude Oils And Asphaltenes By Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and write the review.

With substantial contributions from experienced industrial scientists and engineers, this work will have real application towards improving process efficiency and improvement in the trillion-dollar global petroleum industry. It presents an overview of the emerging field of petroleomics, which endeavors to understand the fundamental components of crude oil. Petroleomics promises to revolutionize petroleum science in much the same way that genomics transformed the study of medicine not long ago. Asphaltenes are a particular focus, with many chapters devoted to the analysis of their structure and properties.
This handbook provides a comprehensive but concise reference resource for the vast field of petroleum technology. Built on the successful book "Practical Advances in Petroleum Processing" published in 2006, it has been extensively revised and expanded to include upstream technologies. The book is divided into four parts: The first part on petroleum characterization offers an in-depth review of the chemical composition and physical properties of petroleum, which determine the possible uses and the quality of the products. The second part provides a brief overview of petroleum geology and upstream practices. The third part exhaustively discusses established and emerging refining technologies from a practical perspective, while the final part describes the production of various refining products, including fuels and lubricants, as well as petrochemicals, such as olefins and polymers. It also covers process automation and real-time refinery-wide process optimization. Two key chapters provide an integrated view of petroleum technology, including environmental and safety issues.Written by international experts from academia, industry and research institutions, including integrated oil companies, catalyst suppliers, licensors, and consultants, it is an invaluable resource for researchers and graduate students as well as practitioners and professionals.
Xenobiotic compounds including pesticides, nitrophenols, pyridine, polycyclic aromatic compounds and polychlorinated biphenyls are widely spread in environment due to anthropogenic activities. Most of them are highly toxic to living beings due to their mutagenic and carcinogenic properties. Therefore, the removal of these compounds from environment is an essential step for environmental sustainability. Microbial remediation has emerged as an effective technology for degradation of these xenobiotic compounds as microorganisms have unique ability to utilize these compounds as their sole source of carbon and energy. The primary goal of this book is to provide detailed information of microbial degradation of many xenobiotic compounds in various microorganisms.
A comprehensive guide to a cutting-edge and cost-effective refinement process for heavy oil Oil sufficiently viscous that it cannot flow normally from production wells is called heavy oil and constitutes as much as 70% of global oil reserves. Extracting and refining this oil can pose significant challenges, including very high transportation costs. As a result, processes which produce and partially refine heavy oil in situ, known as catalytic upgrading, are an increasingly important part of the heavy oil extraction process, and the reduced carbon footprint associated with these methods promises to make them even more significant in the coming years. Catalytic In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils provides a comprehensive introduction to these processes. It introduces the properties and characteristics of heavy and extra-heavy oil before discussing different catalysts and catalyzing processes, their mechanisms and underlying physics, and more. It offers the full sweep of description and analysis required for petroleum and chemical engineers to understand this vital aspect of the modern oil industry. Readers will also find: Detailed discussion of subjects including electron paramagnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and more Analysis of both liquid catalysts and nanoparticle catalysts A numerical simulation of the catalytic in-situ oil upgrading process Catalytic In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils is a valuable reference for petroleum and chemical engineers as well as advanced undergraduate and graduate students in related fields.
This book, The Science and Technology of Unconventional Oils: Finding Refining Opportunities, intends to report the collective physical and chemical knowledge of unconventional oils (heavy, extra-heavy, sour/acid, and shale oil) and the issues associated with their refining for the production of transportation fuels. It will focus on the discussion of the scientific results and technology activities of the refining of unconventional oils. The presence of reactive and refractory compounds and components that negatively impact refining processing (the "bad actors") are discussed and analyzed. The commercially available technologies, with their reported improvements and emerging ideas, concepts, and technologies, are described. This comprehensive overview constitutes the basis for establishing technology gaps, and in return sets the science and technology needs to be addressed in the future. In summary, this book incorporates the relevant knowledge of processing unconventional crude oils and of the "Bottom-of-the-Barrel" fraction, describing the related commercially available and emerging technologies to contribute to the identification of existing gaps. - Relates physicochemical properties and phenomenological behavior of unconventional oils to refining challenges - Describes commercially available technologies and the problems they solve - Lists recent improvements in various processes and identifies technology gaps - Explains emerging new refining technologies and the problems they solve - Discusses future needs and challenges, and suggests further research and development needs
Petroleum engineers search through endless sources to understand oil and gas chemicals, find problems, and discover solutions while operations are becoming more unconventional and driving towards more sustainable practices. The Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling to production, processing, storage, and transportation. The second reference in the series, Flow Assurance, delivers the critical chemical oilfield basics while also covering latest research developments and practical solutions. Organized by the type of problems and mitigation methods, this reference allows the engineer to fully understand how to effectively control chemistry issues, make sound decisions, and mitigate challenges ahead. Basics include root cause, model prediction and laboratory simulation of the major chemistry related challenges during oil and gas productions, while more advanced discussions cover the chemical and non-chemical mitigation strategies for more efficient, safe and sustainable operations. Supported by a list of contributing experts from both academia and industry, Flow Assurance brings a necessary reference to bridge petroleum chemistry operations from theory into safer and cost-effective practical applications. - Offers full range of oilfield production chemistry issues, including chapters focused on hydrate and organic deposition control, liquid blockage mitigation, and abiotic and microbially influenced corrosion prevention - Gain effective control on problems and mitigation strategies from industry list of experts and contributors - Delivers both up to date research developments and practical applications, bridging between theory and practice
Basic theory, applications, and recent trends in analytical techniques used in crude oil and related products analysis This book covers the application of different spectroscopic methods to characterize crude oil and related products. Its topics are presented in a pedagogical manner so that those new to the subject can better understand the content. The book begins by familiarizing the reader with the rheological characterization of crude oil and related products. Subsequent chapters are directed towards the current trends of different spectroscopic methods for the characterization of crude oil. Analytical Characterization Methods for Crude Oil and Related Products features chapters on: optical interrogation of petroleum asphaltenes (myths and reality); ESR characterization of organic free radicals in petroleum products; high-field, pulsed, and double resonance studies of crude oils and their derivatives; NMR spectroscopy in bitumen characterization; applications of Raman spectroscopy in crude oil and bitumen characterization; and more. Uses a bottom-up approach—starting from the basic theory of the technique followed by its applications and recent trends in crude oil analysis Includes informative content so as to take a technician to the level of using a particular analytical method Covers relevany information so as to enable a manager in the industry to make purchasing decisions Analytical Characterization Methods for Crude Oil and Related Products is aimed at researchers in academia as well as technicians and developers of new analytical methods in the oil industry and related areas. It will also be of interest to professionals, scientists, and graduate students in analytical sciences dealing with oil and environmental analysis.
This book is devoted to the chemistry of oil and petroleum products and covers the broad range of topics from heavy fuel oils, crude oils and (diluted) bitumen to today‘s research on asphaltenes. Recent methods are summarized and the large new groups of chemicals found in oils are identifi ed as well as described. The work points the way for a more complete understanding of the composition of petroleum. Highlights include: An update on oil fi ngerprinting New data using Fourier transform mass spectrometry, forensic tools for naphthenic acid fraction compounds in oil sand environmental samples Data on vanadium and nickel content changes in the resins of heavy oils, characteristics of their structural and group composition, and the content of heteroatomic (N, S, O) compounds Study of asphaltenes using direct molecular imaging employing atomic force microscopy (AFM) and scanning tunneling microscopy (STM) confi rming early findings of the dominance of the ‘island’ molecular structure An update on the Yen-Mullins model of asphaltenes in reservoirs giving the requisite solution to the asphaltene particle size, thus resolving the gravity term for thermodynamic modeling. A modifi ed polymer solution theory, the Flory-Huggins-Zuo (FHZ) EoS, is provided to model asphaltene gradients in reservoirs. A suite of oils from the Tarim Basin, Qaidam Basin, Ordos Basin, and Liaohe Basin, China is characterized geochemically to clarify factors that can affect the concentrations and distributions of pyrrolic nitrogen compounds (PNCs) in crude oils. An update on biomarkers in crude oils Updates on mass spectrometry techniques applicable to crude oils
This volume offers environmentally friendly technical solutions that can be implemented to solve problems throughout the value chain of the fossil fuel industry. This new book presents an up-to date view of hydrocarbon microbiology and biotechnology, presented by experts around the world with interest in how our expanding understanding of hydrocarbonoclast ecology and physiology can translate to better tools for bioremediation, oil recovery, bio-upgrading of unconventional crudes, the development of biorefining technologies, and the production of hydrogen and electricity from hydrocarbon wastes. The common theme across the chapters in this book is an interest in how developing hydrocarbon biotechnologies may reduce our impact on the global environment. Written by eminent scientists from both academia and industry, the book starts with a historical perspective on hydrocarbon chemistry and formation, petroleum microbiology, and biotechnology. This is followed by a review of recent research developments in bioremediation and other biotechnologies for hydrocarbons, the principal constituents of petroleum and natural gas.
Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.