Download Free Destabilization Of The Thermohaline Circulation By Atmospheric Feedback Book in PDF and EPUB Free Download. You can read online Destabilization Of The Thermohaline Circulation By Atmospheric Feedback and write the review.

(Cont.) The model is augmented with explicit atmospheric eddy transport parameterizations, allowing examination of the eddy moisture transport (EMT) and eddy heat transport (EHT) feedbacks. As in the hemispheric model, the EMT feedback is always destabilizing, whereas the EHT may stabilize or destabilize. However, in this model whether the EHT stabilizes or destabilizes depends largely on the sign of the ocean salinity feedback and the size of the perturbation. Since oceanic heat transport in the southern hemisphere is weak, the northern hemisphere EMT and EHT feedbacks.
This book presents a global hydrographic description of the thermohaline circulation, an introduction to the theoretical aspects of this phenomenon, and observational evidence for the theory. The hydrographic description and the observational evidence are based on data sources available via internet, mainly from the World Oceanographic Experiment (WOCE). The book also offers an introduction to hydrographic analysis and interpretation.
Thermohaline Circulations and Global Climate Change'' is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO2-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced Co2, changes in the rate of deep-water production are important to future climates. Since deep-water production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 12 months has proceeded in several directions.