Download Free Designing Safer Polymers Book in PDF and EPUB Free Download. You can read online Designing Safer Polymers and write the review.

Im Toxic Substances Control Act (ToSCA) von 1984 wurde festgelegt, unter welchen Bedingungen Polymere von den toxikologischen Anforderungen befreit sind, die üblicherweise an neue Verbindungen gestellt werden. Diese Richtlinien wurden 1995 neu gefaßt. "Designing Safer Polymers" will dem Hersteller oder Importeur solcher Chemikalien im wesentlichen folgende Fragen beantworten: Ist der von ihm betrachtete Stoff ein Polymer im Sinne der Ausnahmeregelung? Erfüllt der Stoff die Bedingungen für eine Befreiung gemäß ToSCA? Welche Faktoren stehen der Befreiung gegebenenfalls im Wege? Ein informatives Handbuch für die Praxis! (01/01)
Smart Polymer Nanocomposites: Biomedical and Environmental Applications presents the latest information on smart polymers and their promising application in various fields, including their role in delivery systems for drugs, tissue engineering scaffolds, cell culture sports, bioseparation, and sensors or actuator systems. - Features detailed information on the preparation, characterization and applications of smart functional polymer composites - Covers a broad range of applications in both the biomedical and environmental engineering fields - Chapters are written by authors with diverse background expertise from the faculties of chemistry, engineering and the manufacturing industry
Designing polymers and developing polymerization processes that are safe, prevent pollution, and are more efficient in the use of materials and engergy is an important topic in modern chemistry. Today, green polymer research can be seen increasingly in academia nd industry. It tackles all aspects of polymers and polymerization - everything from chemical feedstocks, synthetic pathways, and reaction media to the nature of the final polymer as related to its inherent nontoxicity or degradability. This book summarizes and evaluates the latest developments in green polymerization methods. Specifically, new catalytic methods and processes which incorporate renewable resources will be discussed by leading experts in the field of polymer chemistry. This book is a must-have for Polymer Chemists, Chemists Working with/on Organometallics, Biochemists, Physical Chemists, Chemical Engineers, Biotechnologists, Materials Scientists, and Catalytic Chemists.
Covers the design or redesign of chemicals with the specific intent of making them safe for people and the environment. Explains how commercially useful substances of low toxicity can be designed and developed through careful forethought and strategic molecular modification. Describes how existing industrial chemicals that are toxic can be redesigned to be less toxic but retain their usefulness. Discusses how to merge the disciplines of toxicology and chemistry to design new, less toxic commercial chemicals or redesign existing toxic commercial chemicals to result in less toxic substitutes. Provides researchers, developers, and manufacturers of industrial chemicals with a reference source for designing safer chemicals.
Green toxicology is an integral part of green chemistry. One of the key goals of green chemistry is to design less toxic chemicals. Therefore, an understanding of toxicology and hazard assessment is important for any chemist working in green chemistry, but toxicology is rarely part of most chemists' education. As a consequence, chemists lack the toxicological lens necessary to view chemicals in order to design safer substitutions. This book seeks to fill that gap and demonstrate how a basic understanding of toxicology, as well as the tools of in silico and in vitro toxicology, can be an integral part of green chemistry. R&D chemists, product stewards, and toxicologists who work in the field of sustainability, can all benefit from integrating green toxicology principles into their work. Topics include in silico tools for hazard assessment, toxicity testing, and lifecycle considerations, this book aims to act as a bridge between green toxicologists and green chemists.
A thorough review of polymer additives for detergents: chemistry, formulation, testing, mechanisms, performance, applications, and safety concerns. New developments in all these areas are included. Extensive reference data included
When dealing with challenges such as providing fire protection while considering cost, mechanical and thermal performance and simultaneously addressing increasing regulations that deal with composition of matter and life cycle issues, there are no quick, one-size-fits-all answers. Packed with comprehensive coverage, scientific approach, step-by-step directions, and a distillation of technical knowledge, the first edition of Fire Retardancy of Polymeric Materials broke new ground. It supplied a one-stop resource for the development of new fire safe materials. The editors have expanded the second edition to echo the multidisciplinary approach inherent in current flame retardancy technology and put it in a revised, more user-friendly format. More than just an update of previously covered topics, this edition discusses: additional fire retardant chemistry developments in regulations and standards new flame retardant approaches fire safety engineering modeling and fire growth phenomena The book introduces flame retardants polymer-by-polymer, supplemented by a brief overview of mode of action and interaction, and all the other ancillary issues involved in this applied field of materials science. The book delineates what, why, and how to do it, covering the fundamentals of polymer burning/combustion and how to apply these systems and chemistries to specific materials classes. It also provides suggested formulations, discusses why certain materials are preferred for particular uses or applications, and offers a starting point from which to develop fire-safe materials.
This book is intended to serve as a "one-stop" reference resource for important research accomplishments in the area of nanostructured polymer membranes and their processing and characterizations. It will be a very valuable reference source for university and college faculties, professionals, post-doctoral research fellows, senior graduate students, and researchers from R&D laboratories working in the area of polymer nanobased membranes. The various chapters are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe and comprise an up-to-date record on the major findings and observations in the field.
The third volume of this six-volume compendium provides methodologies and lessons learned for the design, analysis, manufacture, and field support of fiber-reinforced, polymeric-matrix composite structures. It also provides guidance on material and process specifications and procedures for using the data that is presented in Volume 2. The information provided is consistent with the guidance provided in Volume 1, and is an extensive compilation of the current knowledge and experiences of engineers and scientists from industry, government, and academia who are active in composites. The Composite Materials Handbook, referred to by industry groups as CMH-17, is a six-volume engineering reference tool that contains over 1,000 records of the latest test data for polymer matrix, metal matrix, ceramic matrix, and structural sandwich composites. CMH-17 provides information and guidance necessary to design and fabricate end items from composite materials. It includes properties of composite materials that meet specific data requirements as well as guidelines for design, analysis, material selection, manufacturing, quality control, and repair. The primary purpose of the handbook is to standardize engineering methodologies related to testing, data reduction, and reporting of property data for current and emerging composite materials. It is used by engineers worldwide in designing and fabricating products made from composite materials.
Polymer Engineering focuses on the preparation and application of polymers in several hot topics such as artificial photosynthesis, water purification by membrane technologies, and biodiesel production from wastewater plants. The authors not only describe the latest developments in polymer science, but also support these experimental results by computational chemistry and modelling studies.