Download Free Designing Reliable And Efficient Networks On Chips Book in PDF and EPUB Free Download. You can read online Designing Reliable And Efficient Networks On Chips and write the review.

Developing NoC based interconnect tailored to a particular application domain, satisfying the application performance constraints with minimum power-area overhead is a major challenge. With technology scaling, as the geometries of on-chip devices reach the physical limits of operation, another important design challenge for NoCs will be to provide dynamic (run-time) support against permanent and intermittent faults that can occur in the system. The purpose of Designing Reliable and Efficient Networks on Chips is to provide state-of-the-art methods to solve some of the most important and time-intensive problems encountered during NoC design.
Thus, the design methodology presented in this thesis bridges an important design gap that exists today, in building efficient communication architectures for MPSoCs.
This book provides a comprehensive coverage of System-on-Chip (SoC) post-silicon validation and debug challenges and state-of-the-art solutions with contributions from SoC designers, academic researchers as well as SoC verification experts. The readers will get a clear understanding of the existing debug infrastructure and how they can be effectively utilized to verify and debug SoCs.
Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space. In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.
This handbook presents fundamental knowledge on the hardware/software (HW/SW) codesign methodology. Contributing expert authors look at key techniques in the design flow as well as selected codesign tools and design environments, building on basic knowledge to consider the latest techniques. The book enables readers to gain real benefits from the HW/SW codesign methodology through explanations and case studies which demonstrate its usefulness. Readers are invited to follow the progress of design techniques through this work, which assists readers in following current research directions and learning about state-of-the-art techniques. Students and researchers will appreciate the wide spectrum of subjects that belong to the design methodology from this handbook.
Incorporating Knowledge Sources into Statistical Speech Recognition addresses the problem of developing efficient automatic speech recognition (ASR) systems, which maintain a balance between utilizing a wide knowledge of speech variability, while keeping the training / recognition effort feasible and improving speech recognition performance. The book provides an efficient general framework to incorporate additional knowledge sources into state-of-the-art statistical ASR systems. It can be applied to many existing ASR problems with their respective model-based likelihood functions in flexible ways.
This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.
Reconfigurable computing brings immense flexibility to on-chip processing while network-on-chip has improved flexibility in on-chip communication. Integrating these two areas of research reaps the benefits of both and represents the promising future of multiprocessor systems-on-chip. This book is the one of the first compilations written to demonstrate this future for network-on-chip design. Through dynamic and creative research into questions ranging from integrating reconfigurable computing techniques, to task assigning, scheduling and arrival, to designing an operating system to take advantage of the computing and communication flexibilities brought about by run-time reconfiguration and network-on-chip, it represents a complete source of the techniques and applications for reconfigurable network-on-chip necessary for understanding of future of this field.
Radio Monitoring: Problems, Methods, and Equipment offers a unified approach to fundamental aspects of Automated Radio Monitoring (ARM). The authors discuss the development, modeling, design, and manufacture of ARM systems. Data from established and recent research are presented and recommendations are made on methods and approaches for solving common problems in ARM. The authors also provide classification and detailed descriptions of modern high-efficient hardware-software ARM equipment, including the equipment for detection, radio direction-finding, parameters measurement and their analysis, and the identification and localization of the electromagnetic field sources. Examples of ARM equipment structure, applications, and software are provided to manage a variety of complicated interference environment in the industrial centers, inside of the buildings, and in the open terrain. This book provides a reference for professionals and researchers interested in deploying ARM technology as a tool for solving problems from radio frequency spectrum usage control.