Download Free Designing Cnr A Very High Thermal Neutron Flux Facility Book in PDF and EPUB Free Download. You can read online Designing Cnr A Very High Thermal Neutron Flux Facility and write the review.

According to a recent study (Eastman-Seitz Committee, National Academy of Science) there is a need for a new generation of steady neutron sources with a thermal neutron flux peak between 5 to 10 times 1015/cm2 sec. Ideally the neutron source would have to operate continuously for several days (two weeks at least) with minimum time (2 to 3 days) for refueling and/or maintenance and it would also be used to irradiate materials and produce isotopes. This paper describes the preliminary design of the nuclear reactor for the proposed Center for Neutron Research (CNR). A duplication of existing designs (HFIR, (ORNL), ILL (Grenoble, France)) would imply high total power and small core life; the necessity of higher efficiencies (in terms of peak-flux-per-unit source or power) then becomes apparent. We have found analytical expressions for the efficiency in terms of a few parameters such as the volume of the source and the Fermi age and diffusion length of thermal neutrons in both the source and reflector regions. A single analytical expression can then be used for scoping the design and to intercompare radically different designs. Higher efficiencies can be achieved by reducing the volume and the moderation of a core immersed in a very low absorbing reflector; on the contrary a very long core life has a negative effect on the efficiency at beginning of life. Consequently, and after detailed calculations, we have found a candidate design with the following characteristics: core, U3Si2, 93% enriched, 18.1-kg 235U, metal fraction 50%, Al cladding, and 35-L volume; reflector and moderator, D2O; efficiency at end of life (EOL) with respect to the ILL reactor, 1.29; flux at EOL, 10 x 1015/cm2 sec (power in core 270. MW); core life, 14 days; burnup 28.4%.
The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project`s maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes.
A fast neutron irradiation facility has been designed, modeled, and constructed in the beam port 4 facility at The University of Texas at Austin’s TRIGA Mark-II Reactor. This facility targets the Watt-fission neutron spectrum in a controlled environment by reducing the present thermal and epithermal flux while preserving the fast neutron flux. The present facility will open new avenues in nuclear non-proliferation for fast-fission yields in addition to measuring radionuclide migration. The filter system was designed using MCNP and Solidworks and consists of a lead plug to stop gamma-rays, filter elements of natural boron and 96% enriched B10, collimation elements of borated polyethylene and natural boron, and an exit filter of boron nitride. A beam stop was constructed to reduce the ambient dose rate using borated paraffin wax, polyethylene, cadmium, and lead. Sensitivity studies were performed to configure an economic facility by optimizing the amounts and configurations of materials used in the filter. The filter is modular to allow for rearrangement of elements and the ability to change the materials used as needed should higher efficiencies be desired or a higher total flux. Initial results indicate the facility produces a 10 cm diameter beam with an integrated flux of 6.63x105 n/cm2/s at a reactor power of 950 kW and resembles the Watt-fission spectrum well with a slightly elevated epithermal neutron flux. The fast neutron flux above 0.1 MeV constitutes 98.77% of the total flux and the thermal neutron flux only 0.0014% of the total flux. STAYSL PNNL was used to unfold the neutron spectrum from 9 measurable reactions in 5 flux foils. Results suggest that the fast neutron flux is higher than anticipated in all STAYSL runs although the total flux is lower than anticipated.
Abstract: The objective of this research was to bring a thermal neutron beam facility to the Ohio State University Nuclear Reactor Laboratory for the purposes of neutron-based research. The neutron beam is extracted from the reactor core through a neutron collimator emplaced in Beam Port #2, the radial beam port facing the core at a 30° angle. The collimator is an aluminum tube containing components designed to filter and shape the neutron beam. The filters are poly-crystalline bismuth (10.16 cm thickness, 12.7 cm diameter) for significantly reducing gamma ray content and single-crystal sapphire (12.7 cm thickness, 10.16 cm diameter) for preferentially passing thermal neutrons while scattering more energetic neutrons out of the beam. The thermal neutron beam is defined by multiple 3.0 cm diameter apertures in borated aluminum. Apertures in polyethylene-based disks and in Pb disks provide shielding for fast neutrons and gamma rays, respectively, in the neutron collimator. Characterization of the beam was performed using foil activation analysis to find the neutron flux and a low-cost digital neutron imaging apparatus to "see" the beam profile. The neutron collimator delivers the filtered thermal neutron beam with a 3.5 cm diameter umbra and a thermal neutron equivalent flux of (8.55 +̲ 0.19) x 106 cm−2s−1 at 450 kW reactor power (90% of rated limit) to the sample location. The beam is highly thermalized with a cadmium ratio of 266 +̲ 13. The facility was designed for neutron depth profiling, a nondestructive analytical technique for finding the concentration versus depth in the near surface (tens of microns) for isotopes that undergo charged particle emitting reactions, such as 10B(n, 4He)7Li, 6Li (n, 3H)4He, and 3He (n, 1H)3H, to name a few.
The ability of the Ohio State University Research Reactor, OSURR, to conduct experiments from the generation of the neutron flux is important in conducting research by the University and external entities that require a flux of this magnitude. In particular, research involving a fast neutron flux is of interest due to the different interactions fast neutrons have as opposed to thermal neutrons. The OSURR is able to operate up to 500 kW, which creates a neutron flux in the order of 1013 n/cm2-s. Currently, Beam Port 2 provides a thermal neutron beam profile of 30 mm in diameter for experimentation such as neutron depth profiling, activation analysis, and evaluation of radiation damage to electronics. Beam Port 1 uses a sample area located adjacent and perpendicular to the fuel plates of the reactor for in-core irradiation. During experimentation, the remainder of Beam Port 1 must be plugged with removable concrete shielding to prevent radiation exposure that can be upwards of 1x104 rem/hr. The upgrade to Beam Port 1 consists of a collimator to shape the neutron flux from the reactor into a beam of fast neutrons, similar in diameter to Beam Port 2, in order to irradiate samples external to the reactor. In addition, mobile external shielding is designed to prevent exceeding the exposure limits of 5 rem/yr when the facility is in use. With this upgrade the research reactor has the ability to conduct simultaneous experiments with a fast and thermal neutron beam, external to the biological shielding, without releasing any harmful exposure.