Download Free Design Synthesis And Host Guest Chemistry Of Rhodamine Derivatives And Their Transition Metal Complexes Book in PDF and EPUB Free Download. You can read online Design Synthesis And Host Guest Chemistry Of Rhodamine Derivatives And Their Transition Metal Complexes and write the review.

This dissertation, "Design, Synthesis and Host-guest Chemistry of Rhodamine Derivatives and Their Transition Metal Complexes" by Ho-chuen, Lam, 林浩銓, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: New classes of luminescent transition metal complexes, including the systems of rhenium(I) tricarbonyl diimine, cyclometalated iridium(III) diimine, cyclometalated rhodium(III) diimine, ruthenium(II) diimine and ruthenium(II) terpyridine complexes tethered with rhodamine moieties, have been synthesized. The X-ray crystal structure of one of the cyclometalated rhodium(III) diimine complexes with rhodamine pendants, [Rh(SPLC2N2)(ppy)2](PF6) has been determined. The molecular structure of [Rh(SPLC2N2)(ppy)2](PF6) showed a distorted octahedral geometry and the rhodamine moiety was found in a spirolactam closed-ring form. All of them were found to exhibit emission in fluid solution. The emissions of rhenium(I) tricarbonyl diimine and ruthenium(II) polypyridyl complexes are derived from the triplet metal-to-ligand charge transfer (3MLCT) excited state, i.e. from dπ orbital of the rhenium(I) or ruthenium(II) metal center to the π* orbital of the diimine ligand; while that of cyclometalated iridium(III) diimine complexes is (3MLCT) [dπ(Ir) → π*(N DEGREESN)] and that of cyclometalated rhodium(III) diimine complexes involves the (3IL) [π → π*(N DEGREESC)] excited state, probably mixed with (3MLCT) [dπ(Rh) → π*(N DEGREESC)] character. The cation-binding properties of these complexes toward alkali, alkaline-earth and transition-metal cations were investigated by electronic absorption and emission spectrophotometries. Some of them were found to exhibit new low-energy absorption and emission bands, characteristic of the rhodamine absorption and emission, with high selectivity and sensitivity for certain transition metal cations. A series of rhodamine-appended Schiff base organic compounds has also been synthesized in order to explore their capability as luminescent lanthanide ion sensors. The lanthanide ion binding properties of one of the compounds in acetonitrile were examined. Upon addition of lanthanide ions, new intense low-energy electronic absorption and emission bands were also observed, characteristic of the rhodamine absorption and emission, demonstrating its lanthanide ion sensing behaviour. DOI: 10.5353/th_b5060562 Subjects: Rhodium compounds - Synthesis Transition metal complexes - Synthesis
Rhodamine derivatives have been found to sense transition metal ions selectively, and the related chemosensing behavior has been studied extensively. Drastic color changes and emission enhancements have been observed as a result of spirolactam ring-opening during the stimulation of certain transition metal ions. Because lanthanide ions are known to prefer higher coordination numbers than transition metal ions, the utilization of this preference is a potential strategy for exploring rhodamine-based chemosensors for selective lanthanide ion sensing. In addition to their application as chemosensors, rhodamine organic dyes can also be incorporated into luminescent transition metal systems and function as photosensitizers for efficient photodynamic therapy (PDT). Furthermore, introducing anti-cancer drugs into rhodamine-transition metal hybrid systems can yield synergistic effect that cause tumor cell death. In this thesis, we focus on the molecular design, characterization, properties, mechanisms, and practical application of rhodamine-based chemosensors and photosensitizers. In Chapter 1, the development of rhodamine-derivative-based chemosensors and rhodamine-containing transition metal complexes is summarized. In Chapter 2, a series of rhodamine-derivative-containing macrocycle compounds are designed, synthesized, and characterized. One macrocycle compound called MR1 was determined to exhibit selective sensing towards Tb( I) and Dy( I) ions with high sensitivity. Based on binding constants and high-resolution mass spectrometry measurement results, sensing mechanisms of MR1 for Tb( I) and Dy( I) ions are proposed. Furthermore, MR1 exhibits high stability and reusability for Ln( I) ion absorption in the solid state. This is the first example of rhodamine derivatives as fluorescent probes for Ln( I) ions. The molecular i structures of the macrocycle compounds are defined as follows: In Chapter 3, a series of rhodamine-appended Ir( I) complexes with different cyclometallating ligands are designed and synthesized, and the relationship between singlet oxygen (1O2) generation efficiency and the energy level of the Ir( I)-based triplet metal-to-ligand charge transfer (3MLCT) excited state (T1') is investigated and correlated. In addition to the direct population of the rhodamine triplet excited state (T1) through the intersystem crossing process, the T1' state acting as a relay could provide an additional pathway to generate the rhodamine T1 state, leading to enhanced 1O2 generation ability. More importantly, this study provides a novel concept for the molecular design and exploration of other photosensitizers for efficient PDT. The molecular structures of rhodamine-containing Ir( I) complexes are defined as follows: In Chapter 4, the mechanism proposed in Chapter 3 is verified to be adaptable not only in an iridium( I) system but also in a platinum( ) system. 1O2 generation ability is significantly enhanced by reducing the energy gap between the Pt( )-iv based 3MLCT state (T1') and rhodamine singlet state (S1). Furthermore, the in vitro PDT effect is significantly enhanced by introducing anti-cancer drugs into a rhodamine-tethered Pt( ) system. The molecular structures of Pt5 with high 1O2 generation ability and Pt6 with the best in vitro PDT performance are defined as follows:
Cyclometalated Ir(III) and Pt(II) compounds are among the most promising phosphorescent emitters for various applications, such as organic light emitting diodes (OLEDs), chemical sensors and bioimaging labels. This family of complexes exhibits high thermal and photo-stability, excellent quantum efficiency, and relatively short lifetime. More importantly, their luminescent properties can be fully tunable by modifying the coordinating ligands. In this thesis, a series of 2-(1,2,3-triazol-4-yl)-pyridine derivatives, referred to as the "click" ligands, are used to build phosphorescent Ir(III) and Pt(II) compounds. The robust and tolerant nature of the copper mediated 1,3-dipolar cycloaddition reactions offers great flexibility in the molecular design. Chapter 1 and Chapter 2 focus on the synthesis of heteroleptic cyclometalated Ir (III) and Pt(II) complexes by utilizing the Cu(I) triazolide intermediates generated in "click" reactions as transmetalating reagents. Ligand synthesis and metalation can be achieved in one pot under mild reaction conditions. For the Ir(III) system, the "click" ligands show switchable coordination modes, between the C, N- and N, N-chelation. These ligands act as C, N, N-bridging units to form unique zwitterionic dinuclear complexes with two cyclometalated Pt(II) units. In Chapter 3, cyclometalated Pt(II) complexes with N, N-chelating "click" ligands are synthesized. Their aggregation-induced solid-state emission is highly responsive to environmental stimuli, such as solvents, heat and mechanical force. This family of compounds represents the first thermotropic Col(h) liquid crystals with only one sidechain. Furthermore, the combined liquid crystalline and mechanochromic properties make them attractive functional materials.
Anion recognition plays a critical role in a range of biological processes, and a variety of receptors and carriers can be found throughout the natural world. Chemists working in the area of supramolecular chemistry have created a range of anion receptors, drawing inspiration from nature as well as their own inventive processes. This book traces the origins of anion recognition chemistry as a unique sub-field in supramolecular chemistry while illustrating the basic approaches currently being used to effect receptor design. The combination of biological overview and summary of current synthetic approaches provides a coverage that is both comprehensive and comprehensible. First, the authors detail the key design motifs that have been used to generate synthetic receptors and which are likely to provide the basis for further developments. They also highlight briefly some of the features that are present in naturally occurring anion recognition and transport systems and summarise the applications of anion recognition chemistry. Providing as it does a detailed review for practitioners in the field and a concise introduction to the topic for newcomers, Anion Receptor Chemistry reflects the current state of the art. Fully referenced and illustrated in colour, it is a welcome addition to the literature.
Bioinorganic photochemistry is a rapidly evolving field integrating inorganic photochemistry with biological, medical and environmental sciences. The interactions of light with inorganic species in natural systems, and the applications in artificial systems of medical or environmental importance, form the basis of this challenging inter-disciplinary research area. Bioinorganic Photochemistry provides a comprehensive overview of the concepts and reactions fundamental to the field, illustrating important applications in biological, medical and environmental sciences. Topics covered include: Cosmic and environmental photochemistry Photochemistry of biologically relevant nanoassemblies Molecular aspects of photosynthesis Photoinduced electron transfer in biosystems Modern therapeutic strategies in photomedicine The book concludes with an outlook for the future of environmental protection, discussing emerging techniques in the field of pollution abatement, and the potential for bioinorganic photochemistry as a pathway to developing cheap, environmentally friendly sources of energy. Written as an authoritative guide for researchers involved in the development of bioinorganic photochemical processes, Bioinorganic Photochemistry is also accessible to scientists new to the field, and will be a key reference source for advanced courses in inorganic, and bioinorganic chemistry.
Modern Inorganic Synthetic Chemistry, Second Edition captures, in five distinct sections, the latest advancements in inorganic synthetic chemistry, providing materials chemists, chemical engineers, and materials scientists with a valuable reference source to help them advance their research efforts and achieve breakthroughs. Section one includes six chapters centering on synthetic chemistry under specific conditions, such as high-temperature, low-temperature and cryogenic, hydrothermal and solvothermal, high-pressure, photochemical and fusion conditions. Section two focuses on the synthesis and related chemistry problems of highly distinct categories of inorganic compounds, including superheavy elements, coordination compounds and coordination polymers, cluster compounds, organometallic compounds, inorganic polymers, and nonstoichiometric compounds. Section three elaborates on the synthetic chemistry of five important classes of inorganic functional materials, namely, ordered porous materials, carbon materials, advanced ceramic materials, host-guest materials, and hierarchically structured materials. Section four consists of four chapters where the synthesis of functional inorganic aggregates is discussed, giving special attention to the growth of single crystals, assembly of nanomaterials, and preparation of amorphous materials and membranes. The new edition’s biggest highlight is Section five where the frontier in inorganic synthetic chemistry is reviewed by focusing on biomimetic synthesis and rationally designed synthesis. Focuses on the chemistry of inorganic synthesis, assembly, and organization of wide-ranging inorganic systems Covers all major methodologies of inorganic synthesis Provides state-of-the-art synthetic methods Includes real examples in the organization of complex inorganic functional materials Contains more than 4000 references that are all highly reflective of the latest advancement in inorganic synthetic chemistry Presents a comprehensive coverage of the key issues involved in modern inorganic synthetic chemistry as written by experts in the field
Iptycenes Chemistry: From Synthesis to Applications provides a comprehensive overview of the development of iptycene chemistry in the past seventy years. This book covers: (1) the basic nomenclature and general properties of iptycenes and their derivatives; (2) the synthesis and functionalization reactions of triptycenes, pentiptycenes, higher iptycenes, heterotriptycenes, and homotriptycenes; (3) the methods for the preparation of iptycene-based polymers with different types; and (4) the applications of iptycenes and their derivatives in molecular machines, materials science, host-guest chemistry, self-assembly, coordination chemistry, physical organic chemistry, medicinal chemistry, and so on. Consequently, such a book is not only helpful to researchers working in iptycene chemistry, but can also facilitate future research in wide areas.
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems Discusses novel approaches towards the creation of complex multiscale architectures