Download Free Design Optimization Of Wind Energy Conversion Systems With Applications Book in PDF and EPUB Free Download. You can read online Design Optimization Of Wind Energy Conversion Systems With Applications and write the review.

Modern and larger horizontal-axis wind turbines with power capacity reaching 15 MW and rotors of more than 235-meter diameter are under continuous development for the merit of minimizing the unit cost of energy production (total annual cost/annual energy produced). Such valuable advances in this competitive source of clean energy have made numerous research contributions in developing wind industry technologies worldwide. This book provides important information on the optimum design of wind energy conversion systems (WECS) with a comprehensive and self-contained handling of design fundamentals of wind turbines. Section I deals with optimal production of energy, multi-disciplinary optimization of wind turbines, aerodynamic and structural dynamic optimization and aeroelasticity of the rotating blades. Section II considers operational monitoring, reliability and optimal control of wind turbine components.
Renewable energies constitute excellent solutions to both the increase of energy consumption and environment problems. Among these energies, wind energy is very interesting. Wind energy is the subject of advanced research. In the development of wind turbine, the design of its different structures is very important. It will ensure: the robustness of the system, the energy efficiency, the optimal cost and the high reliability. The use of advanced control technology and new technology products allows bringing the wind energy conversion system in its optimal operating mode. Different strategies of control can be applied on generators, systems relating to blades, etc. in order to extract maximal power from the wind. The goal of this book is to present recent works on design, control and applications in wind energy conversion systems.
This book presents advanced studies on the conversion efficiency, mechanical reliability, and the quality of power related to wind energy systems. The main concern regarding such systems is reconciling the highly intermittent nature of the primary source (wind speed) with the demand for high-quality electrical energy and system stability. This means that wind energy conversion within the standard parameters imposed by the energy market and power industry is unachievable without optimization and control. The book discusses the rapid growth of control and optimization paradigms and applies them to wind energy systems: new controllers, new computational approaches, new applications, new algorithms, and new obstacles.
Covering all aspects of this important topic, this work presents a review of the main control issues in wind power generation, offering a unified picture of the issues surrounding its optimal control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.
Design and Performance Optimization of Renewable Energy Systems provides an integrated discussion of issues relating to renewable energy performance design and optimization using advanced thermodynamic analysis with modern methods to configure major renewable energy plant configurations (solar, geothermal, wind, hydro, PV). Vectors of performance enhancement reviewed include thermodynamics, heat transfer, exergoeconomics and neural network techniques. Source technologies studied range across geothermal power plants, hydroelectric power, solar power towers, linear concentrating PV, parabolic trough solar collectors, grid-tied hybrid solar PV/Fuel cell for freshwater production, and wind energy systems. Finally, nanofluids in renewable energy systems are reviewed and discussed from the heat transfer enhancement perspective. Reviews the fundamentals of thermodynamics and heat transfer concepts to help engineers overcome design challenges for performance maximization Explores advanced design and operating principles for solar, geothermal and wind energy systems with diagrams and examples Combines detailed mathematical modeling with relevant computational analyses, focusing on novel techniques such as artificial neural network analyses Demonstrates how to maximize overall system performance by achieving synergies in equipment and component efficiency
Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems, helping researchers solve many nonlinear problems
This book describes applications of Jaya and Rao algorithms on real case studies concerning different renewable energy sources. In the last few decades, researchers have focused on renewable energy resources like solar energy, bio-energy, wave energy, ocean thermal energy, tidal energy, geothermal energy, and wind energy. This has resulted in the development of new techniques and tools that could harvest energy from renewable energy sources. Many researchers and scientists have focused on developing and optimizing the energy systems to extract and utilize renewable energy more efficiently. In this book, recently developed Jaya and Rao (Rao-1, Rao-2, and Rao-3) algorithms are introduced for single- and multi-objective optimization of selected renewable energy systems. The results of applications of the different versions of Jaya and Rao algorithms are compared with the other optimization techniques like GA, NSGA-II, PSO, MOPSO, ABC, etc., and the performance of the Jaya and Rao algorithms is highlighted compared to other optimization algorithms in the case of renewable energy systems. The book also includes the validation of different versions of the Jaya and Rao algorithms through the application to complex single- and multi-objective unconstrained benchmark functions. The algorithms and computer codes of different version of Jaya and Rao algorithms are included in the book that will be very much useful to readers in industry and academic research.
The limitation of fossil fuels has challenged scientists and engineers to search for alternative energy resources that can meet future energy demand. Renewable Energy System Design is a valuable reference focusing on engineering, design, and operating principles that engineers can follow in order to successfully design more robust and efficient renewable energy systems. Written by Dr. Ziyad Salameh, an expert with over thirty years of teaching, research, and design experience, Renewable Energy System Design provides readers with the "nuts and bolts" of photovoltaic, wind energy, and hybrid wind/PV systems. It explores renewable energy storage devices with an emphasis on batteries and fuel cells and emerging sustainable technologies like biomass, geothermal power, ocean thermal energy conversion, solar thermal, and satellite power. Renewable Energy System Design is a must-have resource that provides engineers and students with a comprehensive yet practical guide to the characteristics, principles of operation, and power potential of the most prevalent renewable energy systems. Explains and demonstrates design and operating principles for solar, wind, hybrid and emerging systems with diagrams and examples Utilizes case studies to help engineers anticipate and overcome common design challenges Explores renewable energy storage methods particularly batteries and fuel cells and emerging renewable technologies