Download Free Design Of Wireless Power Transfer And Data Telemetry System For Biomedical Applications Book in PDF and EPUB Free Download. You can read online Design Of Wireless Power Transfer And Data Telemetry System For Biomedical Applications and write the review.

Inductive powering has been a reliable and simple method for many years to wirelessly power devices over relatively short distances, from a few centimetres to a few feet. Examples are found in biomedical applications, such as cochlear implants; in RFID, such as smart cards for building access control; and in consumer devices, such as electrical toothbrushes. Device sizes shrunk considerably the past decades, demanding accurate design tools to obtain reliable link operation in demanding environments. With smaller coil sizes, the link efficiency drops dramatically to a point where the commonly used calculation methods become invalid. Inductive Powering: Basic Theory and Application to Biomedical Systems lists all design equations and topology alternatives to successfully build an inductive power and data link for your specific application. It also contains practical guidelines to expand the external driver with a servomechanism that automatically tunes itself to varying coupling and load conditions.
This book focuses on emerging wireless power/data and energy harvesting technologies, and highlights their fundamental requirements, followed by recent advancements. It provides a various technical overview and analysis of key techniques for wireless power/data and energy harvesting system design. The state-of-the-art system introduced in this book will benefit designers looking to develop wireless power transfer and energy harvesting technologies in a variety of fields, such as wearable, implantable devices, home appliances, and electric vehicles.
A guide to the theory and recent development in the medical use of antenna technology Antenna and Sensor Technologies in Modern Medical Applications offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book: Covers recent developments in wireless medical telemetry Reviews the theory and design of in vitro/in vivo testing Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication Includes a chapter with an annotated list of the most comprehensive and important references in the field Written for students of engineering and antenna and sensor engineers, Antenna and Sensor Technologies in Modern Medical Applications is an essential guide to understanding human body interaction with antennas and sensors.
This book presents state-of-the-art analog and power management IC design techniques for various wireless power transfer (WPT) systems. To create elaborate power management solutions, circuit designers require an in-depth understanding of the characteristics of each converter and regulator in the power chain. This book addresses WPT design issues at both system- and circuit-level, and serves as a handbook offering design insights for research students and engineers in the integrated power electronics area.
A must-have compendium on biomedical telemetry for all biomedical professional engineers, researchers, and graduate students in the field Handbook of Biomedical Telemetry describes the main components of a typical biomedical telemetry system, as well as its technical challenges. Written by a diverse group of experts in the field, it is filled with overviews, highly-detailed scientific analyses, and example applications of biomedical telemetry. The book also addresses technologies for biomedical sensing and design of biomedical telemetry devices with special emphasis on powering/integration issues and materials for biomedical telemetry applications. Handbook of Biomedical Telemetry: Describes the main components of a typical biomedical telemetry system, along with the technical challenges Discusses issues of spectrum regulations, standards, and interoperability—while major technical challenges related to advanced materials, miniaturization, and biocompatibility issues are also included Covers body area electromagnetics, inductive coupling, antennas for biomedical telemetry, intra-body communications, non-RF communication links for biomedical telemetry (optical biotelemetry), as well as safety issues, human phantoms, and exposure assessment to high-frequency biotelemetry fields Presents biosensor network topologies and standards; context-aware sensing and multi-sensor fusion; security and privacy issues in biomedical telemetry; and the connection between biomedical telemetry and telemedicine Introduces clinical applications of Body Sensor Networks (BSNs) in addition to selected examples of wearable, implantable, ingestible devices, stimulator and integrated mobile healthcare system paradigms for monitoring and therapeutic intervention Covering biomedical telemetry devices, biosensor network topologies and standards, clinical applications, wearable and implantable devices, and the effects on the mobile healthcare system, this compendium is a must-have for professional engineers, researchers, and graduate students.
This book presents a system-level analysis of inductive wireless power transfer (WPT) links. The basic requirements, design parameters, and utility of key building blocks used in inductive WPT links are presented, followed by detailed theoretical analysis, design, and optimization procedure, while considering practical aspects for various application domains. Readers are provided with fundamental, yet easy to follow guidelines to help them design high-efficiency inductive links, based on a set of application-specific target specifications. The authors discuss a wide variety of recently proposed approaches to achieve the maximum efficiency point, such as the use of additional resonant coils, matching networks, modulation of the load quality factor (Q-modulation), and adjustable DC-DC converters. Additionally, the attainability of the maximum efficiency point together with output voltage regulation is addressed in a closed-loop power control mechanism. Numerous examples, including MATLAB/Octave calculation scripts and LTspice simulation files, are presented throughout the book. This enables readers to check their own results and test variations, facilitating a thorough understanding of the concepts discussed. The book concludes with real examples demonstrating the practical application of topics discussed. Covers both introductory and advanced levels of theory and practice, providing readers with required knowledge and tools to carry on from simple to advanced wireless power transfer concepts and system designs; Provides theoretical foundation throughout the book to address different design aspects; Presents numerous examples throughout the book to complement the analysis and designs; Includes supplementary material (numerical and circuit simulation files) that provide a "hands-on" experience for the reader; Uses real examples to demonstrate the practical application of topics discussed.
The increasing demand for mobile and wireless sensing necessitates the use of highly integrated technology featuring small size, low weight, high performance and low cost: micro-electro-mechanical systems (MEMS) can meet this need. The Handbook of MEMS for wireless and mobile applications provides a comprehensive overview of radio frequency (RF) MEMS technologies and explores the use of these technologies over a wide range of application areas.Part one provides an introduction to the use of RF MEMS as an enabling technology for wireless applications. Chapters review RF MEMS technology and applications as a whole before moving on to describe specific technologies for wireless applications including passive components, phase shifters and antennas. Packaging and reliability of RF MEMS is also discussed. Chapters in part two focus on wireless techniques and applications of wireless MEMS including biomedical applications, such as implantable MEMS, intraocular pressure sensors and wireless drug delivery. Further chapters highlight the use of RF MEMS for automotive radar, the monitoring of telecommunications reliability using wireless MEMS and the use of optical MEMS displays in portable electronics.With its distinguished editor and international team of expert authors, the Handbook of MEMS for wireless and mobile applications is a technical resource for MEMS manufacturers, the electronics industry, and scientists, engineers and academics working on MEMS and wireless systems. - Reviews the use of radio frequency (RF) MEMS as an enabling technology for wireless applications - Discusses wireless techniques and applications of wireless MEMS, including biomedical applications - Describes monitoring structures and the environment with wireless MEMS
Antennas and Wireless Power Transfer Methods for Biomedical Applications Join the cutting edge of biomedical technology with this essential reference The role of wireless communications in biomedical technology is a significant one. Wireless and antenna-driven communication between telemetry components now forms the basis of cardiac pacemakers and defibrillators, cochlear implants, glucose readers, and more. As wireless technology continues to advance and miniaturization progresses, it’s more essential than ever that biomedical research and development incorporate the latest technology. Antennas and Wireless Power Transfer Methods for Biomedical Applications provides a comprehensive introduction to wireless technology and its incorporation into the biomedical field. Beginning with an introduction to recent developments in antenna and wireless technology, it analyzes the major wireless systems currently available and their biomedical applications, actual and potential. The result is an essential guide to technologies that have already improved patient outcomes and increased life expectancies worldwide. Readers will also find: Authored by internationally renowned researchers of wireless technologies Detailed analysis of CP implantable antennas, wearable antennas, near-field wireless power, and more Up to 100 figures that supplement the text Antennas and Wireless Power Transfer Methods for Biomedical Applications is a valuable introduction for biomedical researchers and biomedical engineers, as well as for research and development professionals in the medical device industry.
This book describes new circuits and systems for implantable wireless neural monitoring systems and explains the design of a batteryless, remotely-powered implantable micro-system, designed for continuous neural monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient remote powering and reliable data communication. Novel architecture and design methodologies are used for low power and small area wireless communication link. Additionally, hermetically sealed packaging and in-vivo validation of the implantable device is presented.
The technological approach and the high level of innovation make bioengineering extremely dynamic and this forces researchers to continuous updating. It involves the publication of the results of the latest scientific research. This book covers a wide range of aspects and issues related to advances in bioengineering research with a particular focus on innovative technologies and applications. The book consists of 13 scientific contributions divided in four sections: Materials Science; Biosensors. Electronics and Telemetry; Light Therapy; Computing and Analysis Techniques.