Download Free Design Of Self Adaptation In Distributed Embedded Systems Book in PDF and EPUB Free Download. You can read online Design Of Self Adaptation In Distributed Embedded Systems and write the review.

This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems. Self ‐organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self‐organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self‐X features such as self-configuration, self‐optimization, self‐adaptation, self‐healing and self‐protection.
This extensive and increasing use of embedded systems and their integration in everyday products mark a significant evolution in information science and technology. Nowadays embedded systems design is subject to seamless integration with the physical and electronic environment while meeting requirements like reliability, availability, robustness, power consumption, cost, and deadlines. Thus, embedded systems design raises challenging problems for research, such as security, reliable and mobile services, large-scale heterogeneous distributed systems, adaptation, component-based development, and validation and tool-based certification. This book results from the ARTIST FP5 project funded by the European Commision. By integration 28 leading European research institutions with many top researchers in the area, this book assesses and strategically advances the state of the art in embedded systems. The coherently written monograph-like book is a valuable source of reference for researchers active in the field and serves well as an introduction to scientists and professionals interested in learning about embedded systems design.
This book describes model-based development of adaptive embedded systems, which enable improved functionality using the same resources. The techniques presented facilitate design from a higher level of abstraction, focusing on the problem domain rather than on the solution domain, thereby increasing development efficiency. Models are used to capture system specifications and to implement (manually or automatically) system functionality. The authors demonstrate the real impact of adaptivity on engineering of embedded systems by providing several industrial examples of the models used in the development of adaptive embedded systems.
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.
This book focuses on the design and testing of large-scale, distributed signal processing systems, with a special emphasis on systems architecture, tooling and best practices. Architecture modeling, model checking, model-based evaluation and model-based design optimization occupy central roles. Target systems with resource constraints on processing, communication or energy supply require non-trivial methodologies to model their non-functional requirements, such as timeliness, robustness, lifetime and “evolution” capacity. Besides the theoretical foundations of the methodology, an engineering process and toolchain are described. Real-world cases illustrate the theory and practice tested by the authors in the course of the European project ARTEMIS DEMANES. The book can be used as a “cookbook” for designers and practitioners working with complex embedded systems like sensor networks for the structural integrity monitoring of steel bridges, and distributed micro-climate control systems for greenhouses and smart homes.
"This book is a comprehensive text for the design of safety critical, hard real-time embedded systems. It offers a splendid example for the balanced, integrated treatment of systems and software engineering, helping readers tackle the hardest problems of advanced real-time system design, such as determinism, compositionality, timing and fault management. This book is an essential reading for advanced undergraduates and graduate students in a wide range of disciplines impacted by embedded computing and software. Its conceptual clarity, the style of explanations and the examples make the abstract concepts accessible for a wide audience." Janos Sztipanovits, Director E. Bronson Ingram Distinguished Professor of Engineering Institute for Software Integrated Systems Vanderbilt University Real-Time Systems focuses on hard real-time systems, which are computing systems that must meet their temporal specification in all anticipated load and fault scenarios. The book stresses the system aspects of distributed real-time applications, treating the issues of real-time, distribution and fault-tolerance from an integral point of view. A unique cross-fertilization of ideas and concepts between the academic and industrial worlds has led to the inclusion of many insightful examples from industry to explain the fundamental scientific concepts in a real-world setting. Compared to the Second Edition, new developments in communication standards for time-sensitive networks, such as TSN and Time-Triggered Ethernet are addressed. Furthermore, this edition includes a new chapter on real-time aspects in cloud and fog computing. The book is written as a standard textbook for a high-level undergraduate or graduate course on real-time embedded systems or cyber-physical systems. Its practical approach to solving real-time problems, along with numerous summary exercises, makes it an excellent choice for researchers and practitioners alike.
The IFIP TC-10 Working Conference on Distributed and Parallel Embedded Systems (DIPES 2004) brings together experts from industry and academia to discuss recent developments in this important and growing field in the splendid city of Toulouse, France. The ever decreasing price/performance ratio of microcontrollers makes it economically attractive to replace more and more conventional mechanical or electronic control systems within many products by embedded real-time computer systems. An embedded real-time computer system is always part of a well-specified larger system, which we call an intelligent product. Although most intelligent products start out as stand-alone units, many of them are required to interact with other systems at a later stage. At present, many industries are in the middle of this transition from stand-alone products to networked embedded systems. This transition requires reflection and architecting: The complexity of the evolving distributed artifact can only be controlled, if careful planning and principled design methods replace the - hoc engineering of the first version of many standalone embedded products.
"This book provides innovative behavior models currently used for developing embedded systems, accentuating on graphical and visual notations"--Provided by publisher.