Download Free Design Of Rock Socketed Drilled Shafts Book in PDF and EPUB Free Download. You can read online Design Of Rock Socketed Drilled Shafts and write the review.

This project was aimed at evaluating and developing design methods for laterally loaded drilled shafts socketed in rock. Five lateral load tests on rock socketed drilled shafts with full range of instrumentation were conducted in Ohio. Detailed instrumentation included the use of vibrating wire strain gages, inclinometers, dial gages, and load cells. P-y curves representing site-specific lateral shaft-rock interaction were deduced from strain data. Field testing included the use of a borehole pressuremeter/dilatometer to obtain measurements that were correlated with rock mass strength and deformation parameters as well as with p-y curves. A comparison was made between the baseline p-y curves deduced from strain data of lateral load tests, the p-y curves predicted by using Reese's interim criterion, and the p-y curves from the pressuremeter tests in rock. A new hyperbolic p-y criterion for rock is proposed based on the field test data and extensive theoretical work. Validation of the proposed p-y criterion of rock was carried out by comparing the predictions of shaft deflections and bending moments using the hyperbolic p-y criterion against actual lateral load tests results. Based on the findings of this study, a complete solution for the design of drilled shafts socketed in rock or intermediate geomaterials under lateral loads is provided.
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 360: Rock-Socketed Shafts for Highway Structure Foundations explores current practices pertaining to each step of the design process, along with the limitations; identifies emerging and promising technologies; examines the principal challenges in advancing the state of the practice; and investigates future developments and potential improvements in the use and design of rock-socketed shafts.
Drilled shafts in rock are widely used as foundations of heavy structures such as highway bridges and tall buildings. Although much has been learned about the analysis and design of drilled shafts in rock, all the major findings are published in the form of reports and articles in technical journals and conference proceedings. This book i
Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.
More than ten years have passed since the first edition was published. During that period there have been a substantial number of changes in geotechnical engineering, especially in the applications of foundation engineering. As the world population increases, more land is needed and many soil deposits previously deemed unsuitable for residential housing or other construction projects are now being used. Such areas include problematic soil regions, mining subsidence areas, and sanitary landfills. To overcome the problems associated with these natural or man-made soil deposits, new and improved methods of analysis, design, and implementation are needed in foundation construction. As society develops and living standards rise, tall buildings, transportation facilities, and industrial complexes are increasingly being built. Because of the heavy design loads and the complicated environments, the traditional design concepts, construction materials, methods, and equipment also need improvement. Further, recent energy and material shortages have caused additional burdens on the engineering profession and brought about the need to seek alternative or cost-saving methods for foundation design and construction.
GSP 185 contains 80 papers presented at the International Foundation Congress and Equipment Expo held in Orlando, Florida, March 15-19, 2009.
This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.