Download Free Design Of Nanostructures Book in PDF and EPUB Free Download. You can read online Design Of Nanostructures and write the review.

Design of Nanostructures for Theranostics Applications focuses on the theranostics applications of nanostructures. In particular, multifunctional nanoparticles for diagnostics and treatment of different diseases, including those relating to the blood-brain barrier, are discussed in detail. Chapters explore different type of nanostructures, covering design, fabrication, functionalization and optimization, helping readers obtain the desired properties. Written by a diverse range of international academics, this book is a valuable reference resource for those working in both nanoscience and the pharmaceutical industry. Explores how the design of a range of nanomaterials make them effective theranostic agents, including multifunctional core-shell nanostructures, mesoporous silica nanoparticles, and quantum dots Shows how nanomaterials are used effectively for a range of diseases, including breast cancer, prostate cancer and neurological disorders Assesses the pros and cons of using different nanomaterials for different types of treatment
As one of the fastest growing fields of research in the 21st century, nanotechnology is sure to have an enormous impact on many aspects of our lives. Nanostructure Design: Methods and Protocols serves as a major reference for theoretical and experimental considerations in the design of biological and bio-inspired building blocks, the physical characterization of the formed structures, and the development of their technical applications. The chapters contributed by leading experts are divided into two sections, the first of which covers experimental aspects of nanostructure design and the second delves into computational methods. As a volume of the highly successful Methods in Molecular BiologyTM series, this collection pulls together cutting-edge protocols, written in a step-by-step, readily reproducible format certain to guide researchers to the desired results. Comprehensive and essential, Nanostructure Design: Methods and Protocols uses biological principles and vehicles on design to aid scientists in the great challenges still ahead.
Adopting a unique approach, this book provides a thorough, one-stop introduction to nanoscience and self-assembly of nanomaterials composed of such materials as metals, metal oxides, metal sulphides, polymers, and biopolymers. Clearly divided into three sections covering the main aspects of nanoscience, the first part deals with the basic principles of nanoscale science. Alongside essential approaches and forces, this section also covers thermodynamics, phase transitions, and applications to biological systems. The second and third parts then go on to provide a detailed description of the synthesis of inorganic and organic nanoparticles, respectively. With its interdisciplinary content of importance to many different branches of nanoscience, this is essential reading for material scientists, physicists, biophysical chemists, chemical engineers, and biotechnologists alike.
Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries. Explains how nanomaterials regulate different cell behavior and function as a carrier for different biomolecules Shows how nanobiomaterials and nanobiodevices are used in a range of treatment areas, such as skin tissue, wound healing and bone regeneration Discusses nanomaterial preparation strategies for pharmaceutical application and regenerative medicine
Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and architecture nanostructures, taking into account their unusual shapes and high surface areas. In particular, coverage is given to applications in aerospace, automotive, batteries, sensors, smart textile design, energy conversion, color imaging, printing, computer chips, medical implants, pharmacy, cosmetics, and more. In addition, the book discusses the future of research in these areas. This is a valuable reference for both materials scientists, chemical and mechanical engineers working both in R&D and academia who want to learn more on how nanoparticles and nanomaterials are commercially applied. Provides an in-depth look at the properties of nanoparticles and architecture nanostructures in terms of their applicability for industrial uses Analyzes the most recent advances and industrial applications of different types of nanoparticles and architecture nanostructures, taking into account their unusual structures and compositions Identifies novel nanometric particles and architectures that are of particular value for applications and the techniques required to use them effectively
Design of Nanostructures for Versatile Therapeutic Applications focuses on antimicrobial, antioxidant and nutraceutical applications of nanostructured materials. Many books discuss these subjects, but not from a pharmaceutical point-of-view. This book covers novel approaches related to the modulation of microbial biofilms, antimicrobial therapy and encapsulate polyphenols as antioxidants. Written by an internationally diverse group of academics, this book is an important reference resource for researchers, both in biomaterials science and the pharmaceutical industry. Assesses the most recently developed nanostructures that have potential antimicrobial properties, explaining their novel mechanical aspects Shows how nanoantibiotics can be used to more effectively treat disease Provides a cogent summary of recent developments in nanoantimicrobial discovery, allowing readers to quickly familiarize themselves with the topic
Nanomaterials Design for Sensing Applications examines chemosensors, beginning with molecules that are able to respond to certain stimuli and then showing their assembly and incorporation into sensing materials. The mechanisms of their action for the detection of ions, specific molecules and biostructures, are also covered. A major theme is the affordability of sensors, with particular attention paid to inexpensive and reliable colorimetric sensors that can be read by the naked eye. The book also delves into the development of sensors that utilize existing RFID infrastructure and introduces a novel strategy for the development of self-healing sensing platforms. This book will help readers develop a better understanding of the types of materials used for sensing at the nano level, while also providing an insightful overview on recent advances in this important area. Demonstrates how the use of nanomaterials allows for the creation of cheaper, more reliable sensors Shows how metal oxide nanostructures are used as both sensors and supports for embedded organic and organometallic sensing molecules Explores a novel sensing methodology resulting from the integration of nanostructured sensors into radio frequency identification tags
Over the past few decades, several approaches have been developed for designing nano-structured or molecularly-structured materials. These advances have revolutionized practically all fields of science and engineering, providing an additional design variable, the feature size of the nano-structures, which can be tailored to provide new materials with very special characteristics. Nanomaterials: Design and Simulation explores the role that such advances have made toward a rational design of nanostructures and covers a variety of methods from ab initio electronic structure techniques, ab initio molecular dynamics, to classical molecular dynamics, also being complemented by coarse-graining and continuum methods. Also included is an overview of how the development of these computational tools has enabled the possibility of exploring nanoscopic details and using such information for the prediction of physical and chemical properties that are not always possible to be obtained experimentally. * Provides an overview of approaches that have been developed for designing nano-structured or molecularly-structured materials.* This volume covers several aspects of the simulation and design of nanomaterials analyzed by a selected group of active researchers in the field. * Looks at how the advancement of computational tools have enabled nanoscopic prediction of physical and chemical properties
A carefully developed textbook focusing on the fundamental principles of nanoscale science and nanotechnology.
How could nanotechnology not perk the interest of any designer, engineer or architect? Exploring the intriguing new approaches to design that nanotechnologies offer, Nanomaterials, Nanotechnologies and Design is set against the sometimes fantastic sounding potential of this technology. Nanotechnology offers product engineers, designers, architects and consumers a vastly enhanced palette of materials and properties, ranging from the profound to the superficial. It is for engineering and design students and professionals who need to understand enough about the subject to apply it with real meaning to their own work. World-renowned author team address the hot-topic of nanotechnology The first book to address and explore the impacts and opportunities of nanotech for mainstream designers, engineers and architects Full colour production and excellent design: guaranteed to appeal to everyone concerned with good design and the use of new materials