Download Free Design Of Embedded Control Systems Book in PDF and EPUB Free Download. You can read online Design Of Embedded Control Systems and write the review.

Control system design is a challenging task for practicing engineers. It requires knowledge of different engineering fields, a good understanding of technical specifications and good communication skills. The current book introduces the reader into practical control system design, bridging the gap between theory and practice. The control design techniques presented in the book are all model based., considering the needs and possibilities of practicing engineers. Classical control design techniques are reviewed and methods are presented how to verify the robustness of the design. It is how the designed control algorithm can be implemented in real-time and tested, fulfilling different safety requirements. Good design practices and the systematic software development process are emphasized in the book according to the generic standard IEC61508. The book is mainly addressed to practicing control and embedded software engineers - working in research and development – as well as graduate students who are faced with the challenge to design control systems and implement them in real-time.
A set of original results in the ?eld of high-level design of logical control devices and systems is presented in this book. These concern different aspects of such important and long-term design problems, including the following, which seem to be the main ones. First, the behavior of a device under design must be described properly, and some adequate formal language should be chosen for that. Second, effective algorithmsshouldbeusedforcheckingtheprepareddescriptionforcorrectness, foritssyntacticandsemanticveri?cationattheinitialbehaviorlevel.Third,the problem of logic circuit implementation must be solved using some concrete technological base; ef?cient methods of logic synthesis, test, and veri?cation should be developed for that. Fourth, the task of the communication between the control device and controlled objects (and maybe between different control devices)waitsforitssolution.Alltheseproblemsarehardenoughandcannotbe successfully solved without ef?cient methods and algorithms oriented toward computer implementation. Some of these are described in this book. The languages used for behavior description have been descended usually from two well-known abstract models which became classic: Petri nets and ?nite state machines (FSMs). Anyhow, more detailed versions are developed and described in the book, which enable to give more complete information concerningspeci?cqualitiesoftheregardedsystems.Forexample,themodelof parallelautomatonispresented,whichunliketheconventional?niteautomaton can be placed simultaneously into several places, calledpartial. As a base for circuit implementation of control algorithms, FPGA is accepted in majority of cases.
This fascinating new work comes complete with more than 100 illustrations and a detailed practical prototype. It explores the domains encountered when designing a distributed embedded computer control system as an integrated whole. Basic issues about real-time systems and their properties, especially safety, are examined first. Then, system and hardware architectures are dealt with, along with programming issues, embodying desired properties, basic language subsets, object orientation and language support for hardware and software specifications.
"This book addresses the development of reconfigurable embedded control systems and describes various problems in this important research area, which include static and dynamic (manual or automatic) reconfigurations, multi-agent architectures, modeling and verification, component-based approaches, architecture description languages, distributed reconfigurable architectures, real-time and low power scheduling, execution models, and the implementation of such systems"--
Many embedded engineers and programmers who need to implement basic process or motion control as part of a product design do not have formal training or experience in control system theory. Although some projects require advanced and very sophisticated control systems expertise, the majority of embedded control problems can be solved without resorting to heavy math and complicated control theory. However, existing texts on the subject are highly mathematical and theoretical and do not offer practical examples for embedded designers. This book is different;it presents mathematical background with sufficient rigor for an engineering text, but it concentrates on providing practical application examples that can be used to design working systems, without needing to fully understand the math and high-level theory operating behind the scenes. The author, an engineer with many years of experience in the application of control system theory to embedded designs, offers a concise presentation of the basics of control theory as it pertains to an embedded environment. - Practical, down-to-earth guide teaches engineers to apply practical control theorems without needing to employ rigorous math - Covers the latest concepts in control systems with embedded digital controllers
Review of electronics fundamentals -- Microcontroller concepts -- Worst-case timing, loading, analysis, and design -- Memory technologies and interfacing -- CPU bus interface and timing -- A detailed design example -- Programmable logic devices -- Basic I/O interfaces -- Other interfaces and bus cycles -- Other useful stuff -- Other interfaces.
Robust control theory allows for changes in a system whilst maintaining stability and performance. Applications of this technique are very important for dependable embedded systems, making technologies such as drones and other autonomous systems with sophisticated embedded controllers and systems relatively common-place.
The vast majority of control systems built today are embedded; that is, they rely on built-in, special-purpose digital computers to close their feedback loops. Embedded systems are common in aircraft, factories, chemical processing plants, and even in cars–a single high-end automobile may contain over eighty different computers. The design of embedded controllers and of the intricate, automated communication networks that support them raises many new questions—practical, as well as theoretical—about network protocols, compatibility of operating systems, and ways to maximize the effectiveness of the embedded hardware. This handbook, the first of its kind, provides engineers, computer scientists, mathematicians, and students a broad, comprehensive source of information and technology to address many questions and aspects of embedded and networked control. Separated into six main sections—Fundamentals, Hardware, Software, Theory, Networking, and Applications—this work unifies into a single reference many scattered articles, websites, and specification sheets. Also included are case studies, experiments, and examples that give a multifaceted view of the subject, encompassing computation and communication considerations.
In this practical guide, experienced embedded engineer Lewin Edwards demonstrates faster, lower-cost methods for developing high-end embedded systems. With today's tight schedules and lower budgets, embedded designers are under greater pressure to deliver prototypes and system designs faster and cheaper. Edwards demonstrates how the use of the right tools and operating systems can make seemingly impossible deadlines possible. Designer's Guide to Embedded Systems Development shares many advanced, in-the-trenches design secrets to help engineers achieve better performance on the job. In particular, it covers many of the newer design tools supported by the GPL (GNU Public License) system. Code examples are given to provide concrete illustrations of tasks described in the text. The general procedures are applicable to many possible projects based on any 16/32-bit microcontroller. The book covers choosing the right architecture and development hardware to fit the project; choosing an operating system and developing a toolchain; evaluating software licenses and how they affect a project; step-by-step building instructions for gcc, binutils, gdb and newlib for the ARM7 core used in the case study project; prototyping techniques using a custom printed circuit board; debugging tips; and portability considerations. A wealth of practical tips, tricks and techniques Design better, faster and more cost-effectively
Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-read guide helps you cultivate a host of good development practices, based on classic software design patterns and new patterns unique to embedded programming. Learn how to build system architecture for processors, not operating systems, and discover specific techniques for dealing with hardware difficulties and manufacturing requirements. Written by an expert whoâ??s created embedded systems ranging from urban surveillance and DNA scanners to childrenâ??s toys, this book is ideal for intermediate and experienced programmers, no matter what platform you use. Optimize your system to reduce cost and increase performance Develop an architecture that makes your software robust in resource-constrained environments Explore sensors, motors, and other I/O devices Do more with less: reduce RAM consumption, code space, processor cycles, and power consumption Learn how to update embedded code directly in the processor Discover how to implement complex mathematics on small processors Understand what interviewers look for when you apply for an embedded systems job "Making Embedded Systems is the book for a C programmer who wants to enter the fun (and lucrative) world of embedded systems. Itâ??s very well writtenâ??entertaining, evenâ??and filled with clear illustrations." â??Jack Ganssle, author and embedded system expert.