Download Free Design Of Efficient Vlsi Architectures For Discrete Wavelet Transforms Book in PDF and EPUB Free Download. You can read online Design Of Efficient Vlsi Architectures For Discrete Wavelet Transforms and write the review.

Discrete wavelet transforms (DWTs) have led the revolutions in image and video coding systems over the past decade. In this book, the DWT is presented from the VLSI design perspective, and the related theories, algorithms, and architectures are discussed for 1D, 2D, and 3D DWT.The book provides a comprehensive analysis and discussion of DWTs and their applications including important materials and the newest developments in wavelet processing. For example, the architecture designs of 2D DWT in JPEG 2000 and the development of motion-compensated temporal filtering (MCTF) are explored./a
The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications.
This new volume introduces various VLSI (very-large-scale integration) architecture for DSP filters, speech filters, and image filters, detailing their key applications and discussing different aspects and technologies used in VLSI design, models and architectures, and more. The volume explores the major challenges with the aim to develop real-time hardware architecture designs that are compact and accurate. It provides useful research in the field of computer arithmetic and can be applied for various arithmetic circuits, for their digital implementation schemes, and for performance considerations.
The process of Integrated Circuits (IC) started its era of VLSI (Very Large Scale Integration) in 1970’s when thousands of transistors were integrated into one single chip. Nowadays we are able to integrate more than a billion transistors on a single chip. However, the term “VLSI” is still being used, though there was some effort to coin a new term ULSI (Ultra-Large Scale Integration) for fine distinctions many years ago. VLSI technology has brought tremendous benefits to our everyday life since its occurrence. VLSI circuits are used everywhere, real applications include microprocessors in a personal computer or workstation, chips in a graphic card, digital camera or camcorder, chips in a cell phone or a portable computing device, and embedded processors in an automobile, et al. VLSI covers many phases of design and fabrication of integrated circuits. For a commercial chip design, it involves system definition, VLSI architecture design and optimization, RTL (register transfer language) coding, (pre- and post-synthesis) simulation and verification, synthesis, place and route, timing analyses and timing closure, and multi-step semiconductor device fabrication including wafer processing, die preparation, IC packaging and testing, et al. As the process technology scales down, hundreds or even thousands of millions of transistors are integrated into one single chip. Hence, more and more complicated systems can be integrated into a single chip, the so-called System-on-chip (SoC), which brings to VLSI engineers ever increasingly challenges to master techniques in various phases of VLSI design. For modern SoC design, practical applications are usually speed hungry. For instance, Ethernet standard has evolved from 10Mbps to 10Gbps. Now the specification for 100Mbps Ethernet is on the way. On the other hand, with the popularity of wireless and portable computing devices, low power consumption has become extremely critical. To meet these contradicting requirements, VLSI designers have to perform optimizations at all levels of design. This book is intended to cover a wide range of VLSI design topics. The book can be roughly partitioned into four parts. Part I is mainly focused on algorithmic level and architectural level VLSI design and optimization for image and video signal processing systems. Part II addresses VLSI design optimizations for cryptography and error correction coding. Part III discusses general SoC design techniques as well as other application-specific VLSI design optimizations. The last part will cover generic nano-scale circuit-level design techniques.
Discrete wavelet transform (DWT) algorithms have become standard tools for discrete-time signal and image processing in several areas in research and industry. As DWT provides both frequency and location information of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Theory and Applications describes the latest progress in DWT analysis in non-stationary signal processing, multi-scale image enhancement as well as in biomedical and industrial applications. Each book chapter is a separate entity providing examples both the theory and applications. The book comprises of tutorial and advanced material. It is intended to be a reference text for graduate students and researchers to obtain in-depth knowledge in specific applications.
This volume contains the proceedings from the workshops held in conjunction with the IEEE International Parallel and Distributed Processing Symposium, IPDPS 2000, on 1-5 May 2000 in Cancun, Mexico. The workshopsprovidea forum for bringing together researchers,practiti- ers, and designers from various backgrounds to discuss the state of the art in parallelism.Theyfocusondi erentaspectsofparallelism,fromruntimesystems to formal methods, from optics to irregular problems, from biology to networks of personal computers, from embedded systems to programming environments; the following workshops are represented in this volume: { Workshop on Personal Computer Based Networks of Workstations { Workshop on Advances in Parallel and Distributed Computational Models { Workshop on Par. and Dist. Comp. in Image, Video, and Multimedia { Workshop on High-Level Parallel Prog. Models and Supportive Env. { Workshop on High Performance Data Mining { Workshop on Solving Irregularly Structured Problems in Parallel { Workshop on Java for Parallel and Distributed Computing { WorkshoponBiologicallyInspiredSolutionsto ParallelProcessingProblems { Workshop on Parallel and Distributed Real-Time Systems { Workshop on Embedded HPC Systems and Applications { Recon gurable Architectures Workshop { Workshop on Formal Methods for Parallel Programming { Workshop on Optics and Computer Science { Workshop on Run-Time Systems for Parallel Programming { Workshop on Fault-Tolerant Parallel and Distributed Systems All papers published in the workshops proceedings were selected by the p- gram committee on the basis of referee reports. Each paper was reviewed by independent referees who judged the papers for originality, quality, and cons- tency with the themes of the workshops.
Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in signal/image processing. Wavelet transforms have excellent energy compaction characteristics and can provide perfect reconstruction. The shifting (translation) and scaling (dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients. This work presents new implementation techniques of DWT, that are efficient in terms of computation, storage, and with better signal-to-noise ratio in the reconstructed signal.
This book includes the original, peer reviewed research from the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014), held in December, 2014 at Cheng Shiu University in Kaohsiung, Taiwan. Topics covered include: Automation and robotics, fiber optics and laser technologies, network and communication systems, micro and nano technologies and solar and power systems. This book also Explores emerging technologies and their application in a broad range of engineering disciplines Examines fiber optics and laser technologies Covers biomedical, electrical, industrial and mechanical systems Discusses multimedia systems and applications, computer vision and image & video signal processing
This is the first International Conference on Advances in Computing (ICAdC-2012). The scope of the conference includes all the areas of New Theoretical Computer Science, Systems and Software, and Intelligent systems. Conference Proceedings is a culmination of research results, papers and the theory related to all the three major areas of computing mentioned above. Helps budding researchers, graduates in the areas of Computer Science, Information Science, Electronics, Telecommunication, Instrumentation, Networking to take forward their research work based on the reviewed results in the paper by mutual interaction through e-mail contacts in the proceedings.
The JPEG 2000 Suite provides a comprehensive overview of the baseline JPEG 2000 standard and its extensions. The first part of the book sets out the core coding system, additions to the standard and reference software. The second part discusses the successful deployment of JPEG 2000 in application domains such as video surveillance, digital cinema, digital television, medical imaging, defence imaging, security, geographic imaging and remote sensing, digital culture imaging and 3D graphics. The book also presents implementation strategies accompanied by existing software and hardware solutions. Describes secure JPEG 2000 (JPSEC), interactivity protocols (JPIP), volumetric image data compression (JP3D) and image compression in wireless environments (JPWL), amongst others. Uses a structure which allows for easy cross-reference with the components of the standard. Sets out practical implementation examples and results. Examines strategies for future image compression techniques, including Advanced Image Coding and JPEG XR. Includes contributions from international specialists in industry and academia who have worked on the development of the JPEG 2000 standard. Additional material can be found at www.jpeg.org. The JPEG 2000 Suite is an excellent introduction to the JPEG 2000 standard and is of great appeal to practising electronics engineers, researchers, and hardware and software developers using and developing image coding techniques. Graduate students taking courses on image compression, digital archiving, and data storage techniques will also find the book useful, as will graphic designers, artists, and decision makers in industries developing digital applications.