Download Free Design Of A Superconducting Dc Wind Generator Book in PDF and EPUB Free Download. You can read online Design Of A Superconducting Dc Wind Generator and write the review.

The trend towards larger power ratings of wind turbines asks for innovations in power generation, which requires lower weight and cost, smaller size, higher efficiency and reliability. Due to high current-carrying capability and no DC losses of superconductors, a superconducting wind generator can have a superior power to weight/volume ratio with high efficiency. The work in the book mainly focuses on the feasibility study and design of a superconducting DC wind generator.
This work focuses on two topics. The first is the investigation of producing filaments on copper-stabilized coated conductors, with striations made after or before electroplating the tape. The second topic is the applicability of the striations for reducing the AC losses of cables, in particular the CORC® and RACC cables, which are made with high-temperature superconductor (HTS) striated tapes.
Diese Studie führt eine Auslegung von supraleitenden Kabeln für die Anwendung im 380-kV-Drehstromnetz durch und erläutert allgemeine Aspekte des Einsatzes solcher Kabel im Höchstspannungsnetz. Dabei vergleicht sie die Supraleitungstechnologie unter vielen verschiedenen Kriterien mit anderen Leitungstechnologien. - This study describes the design of superconducting cables for use in the 380 kV three-phase network and explains general aspects of the use of such cables in the extra-high voltage grid. It compares the superconducting technology with other line technologies under many different criteria.
A design process for HTS DC cables was developed for high current applications. Based on the design process, a 35 kA HTS DC cable demonstrator was developed. The superconducting elements of the demonstrator were manufactured and tested individually at 77 K. Afterwards, the demonstrator cable was assembled and tested at 77 K. The assembled demonstrator successfully reached 35 kA at 77 K and self field conditions.
High-temperature superconductors have distinct advantages compared to conventional conductors. Below their critical temperature, superconductors have immeasurably low ohmic losses. To maintain the superconducting state, superconductors require constant cooling. This study aims at identifying the environmental impacts of the application of superconductors in future grid technologies such as superconducting power cables.
This work presents the development and application of high-speed fluorescent thermal imaging for quench analysis in high-temperature superconductors (HTS). Using a fluorescent coating, with a temperature-dependent light emission, temperature changes can be calculated over 2D surfaces. The technique uncovered peculiar transient effects in novel HTS tape architectures and also helped to verify and better understand hot spot development in both insulated and non-insulated, HTS–wound pancake coils.
As environmental concerns have focused attention on the generation of electricity from clean and renewable sources wind energy has become the world's fastest growing energy source. The Wind Energy Handbook draws on the authors' collective industrial and academic experience to highlight the interdisciplinary nature of wind energy research and provide a comprehensive treatment of wind energy for electricity generation. Features include: An authoritative overview of wind turbine technology and wind farm design and development In-depth examination of the aerodynamics and performance of land-based horizontal axis wind turbines A survey of alternative machine architectures and an introduction to the design of the key components Description of the wind resource in terms of wind speed frequency distribution and the structure of turbulence Coverage of site wind speed prediction techniques Discussions of wind farm siting constraints and the assessment of environmental impact The integration of wind farms into the electrical power system, including power quality and system stability Functions of wind turbine controllers and design and analysis techniques With coverage ranging from practical concerns about component design to the economic importance of sustainable power sources, the Wind Energy Handbook will be an asset to engineers, turbine designers, wind energy consultants and graduate engineering students.
Today's wind energy industry is at a crossroads. Global economic instability has threatened or eliminated many financial incentives that have been important to the development of specific markets. Now more than ever, this essential element of the world energy mosaic will require innovative research and strategic collaborations to bolster the industry as it moves forward. This text details topics fundamental to the efficient operation of modern commercial farms and highlights advanced research that will enable next-generation wind energy technologies. The book is organized into three sections, Inflow and Wake Influences on Turbine Performance, Turbine Structural Response, and Power Conversion, Control and Integration. In addition to fundamental concepts, the reader will be exposed to comprehensive treatments of topics like wake dynamics, analysis of complex turbine blades, and power electronics in small-scale wind turbine systems.