Download Free Design Modelling And Seismic Performance Of Outrigger Braced Frame Steel Buildings Subjected To Crustal And Subduction Earthquakes Book in PDF and EPUB Free Download. You can read online Design Modelling And Seismic Performance Of Outrigger Braced Frame Steel Buildings Subjected To Crustal And Subduction Earthquakes and write the review.

Concentrically braced frames (CBFs) are widely used in North America. The CBFs possess high stiffness and moderate ductility, while braces are designed to buckle in compression and yield in tension. However, after a brace experiences buckling, its compression strength diminishes and the system undergoes asymmetrical response, while the distribution of internal forces and deformations is influenced by the frequency content of ground motions. Despite the system's stiffness, CBFs are prone to concentrate damage within a floor which leads to the formation of storey mechanism. To preserve the stability of the system during the nonlinear seismic response, the National Building Code of Canada (NBCC) imposes limits on a building's height which depends on the selected ductility-related force modification factor, Rd. Thus, the height limit for buildings with moderately ductile concentrically braced frames, MD-CBFs, is 40 m and for limited ductility concentrically braced frames, LD-CBFs, is 60 m. To safely increase the height limit of ductile braced frame buildings, a system labelled Outrigger Braced Frame, OBF, is proposed and developed in this study. According to the Council on Tall Buildings and Urban Habitat (CTBUH), a building with more than 14 stories or more than 50 meters in height may be considered a high-rise building. The aim of this research is to develop, design, model, and study the seismic performance of mid-rise (e.g. tweleve-storey) and high-rise (e.g., sixteen-storey) OBF buildings subjected to dynamic loads. It is noted that the outrigger system functions by tying together a core system and a perimeter system. Herein, the core system is made of MD-CBFs and the perimeter system is made of gravity columns. Furthermore, only the core braces are designed to dissipate energy, while the outrigger's diagonals are designed to respond in the elastic range. The performance of OBF system is controlled by the amount of added stiffness and optimum location of outriggers across the building's height, the number of levels with outriggers and the intensity of seismic zone. All multi-storey buildings are located in high-risk seismic zone of Victoria, B.C. Canada, on Site Class C. The selection of ground motions was made to capture the seismic characteristics at buildings location. Herein, two sets of crustal and subduction ground motions were considered such as California records and the mega-thrust magnitude 9 Tohoku records, respectively. The nonlinear time-history dynamic analyses were conducted using the OpenSees software. The main objectives of this thesis are three-fold: i) to identify the effect of subduction versus crustal ground motions on the seismic response of low-rise, mid-rise and high-rise MD-CBF buildings and to study their seismic performance from yielding to failure, ii) to provide design method and optimum location for outriggers of OBF steel buildings, iii) to assess the collapse safety of the proposed mid-rise and high-rise OBF steel buildings using FEMA P695 procedure and to compare their seismic performance against that resulted for MD-CBF buildings. It is concluded that the OBF buildings are slightly stiffer than the corresponding MD-CBF buildings, and they experienced lower interstorey drift and residual interstorey drift than the MD-CBF buildings. In all case studies considered here, the collapse margin ratio (CMR) is greater for buildings subjected to crustal ground motions than subduction ground motions. Evaluation of seismic performance of sample 12-storey and 16-storey OBF buildings shows that these buildings are able to pass the collapse safety acceptance criteria, ACMR ≥ ACMR10%, when subjected to both sets of ground motions. On the other hand, the corresponding MD-CBF buildings are not able to pass the collapse safety acceptance criteria when subjected to subduction records set. Hence, special attention should be given when designing buildings in seismic regions which are prone to both types of earthquakes.
Traditional concentrically braced frames, CBF, are stiff and provide limited to moderate ductility, while moment resisting frames, MRF, are able to dissipate seismic energy when undergoing large lateral displacements. However, these traditional earthquake resistant systems do not show uniformly distributed damage along the building height. Changes in structural proprieties during nonlinear hysteresis behaviour may lead to drift concentration and weak-storey response. Moreover, both traditional systems are susceptible to long-duration subduction earthquakes. The pursuit of these issues led to the concept of utilizing multiple-resisting structural systems that act progressively so that the overall seismic resistance is not significantly reduced during long-duration earthquakes. The structural system consisting of a rigid braced frame that provides primary stable cyclic behavior and a moment frame acting as a backup system with good flexural behavior is the steel Braced Dual System studied herein. The objectives of this study are: a) to investigate the seismic response of steel Braced Dual building from yielding to failure, as well as, to identify the types of failure mechanism; b) to assess the seismic response of Braced Dual System against the traditional MRFs and CBFs with moderate ductility through incremental dynamic analysis; c) to evaluate the effect of long duration subduction earthquakes versus crustal type earthquakes on these building systems through collapse safety criteria using FEMA P695 procedure and to assess the probability of exceeding defined performance levels using fragility analysis. To carry out these objectives, detail numerical models were developed using the OpenSees framework. The prototype 8-storey office building is located on firm soil in Vancouver, B.C. and is subjected to two sets of crustal and subduction ground motions. Two traditional earthquake resistant systems (MD-CBF, MD-MRF) and the Braced Dual System are considered. Design is conducted according to NBCC2015 and CSA/S16-14. From nonlinear time history analysis, the following results are reported: for the Braced Dual System, two types of failure mechanism involving either one floor or two adjacent floors (in general the bottom floors) were identified which also involve flexural yielding of MRF beam of critical floors; the Braced Dual System provides larger ductility than the MD-CBF, shows significant increase of seismic resistant capacity for similar seismic demands, provides the largest collapse margin ratio and collapse safety capacity under both earthquake types. In addition, the building with Braced Dual System shows a progressive seismic behavior and a more uniform damage distribution along the building height. From fragility analysis resulted that at Collapse Prevention (CP) limit state, the Braced Dual System experiences 100% probability of exceedance after it was subjected to two times larger seismic demand than the MD-CBF or MD-MRF systems. All studied structural systems are sensitive to long duration subduction earthquake.
Providing real world applications for different structural types and seismic characteristics, Seismic Design of Steel Structures combines knowledge of seismic behavior of steel structures with the principles of earthquake engineering. This book focuses on seismic design, and concentrates specifically on seismic-resistant steel structures. Drawing on experience from the Northridge to the Tohoku earthquakes, it combines understanding of the seismic behavior of steel structures with the principles of earthquake engineering. The book focuses on the global as well as local behavior of steel structures and their effective seismic-resistant design. It recognises different types of earthquakes, takes into account the especial danger of fire after earthquake, and proposes new bracing and connecting systems for new seismic resistant steel structures, and also for upgrading existing reinforced concrete structures. Includes the results of the extensive use of the DUCTROCT M computer program, which is used for the evaluation of the seismic available ductility, both monotonic and cyclic, for different types of earthquakes Demonstrates good design principles by highlighting the behavior of seismic-resistant steel structures in many applications from around the world Provides a methodological approach, making a clear distinction between strong and low-to-moderate seismic regions This book serves as a reference for structural engineers involved in seismic design, as well as researchers and graduate students of seismic structural analysis and design.
This book examines and presents essential aspects of the behavior, analysis, design and detailing of reinforced concrete buildings subjected to strong seismic activity. Seismic design is an extremely complex problem that has seen spectacular development in the last decades. The present volume tries to show how the principles and methods of earthquake engineering can be applied to seismic analysis and design of reinforced concrete buildings. The book starts with an up-to-date presentation of fundamental aspects of reinforced concrete behavior quantified through constitutive laws for monotonic and hysteretic loading. Basic concepts of post-elastic analysis like plastic hinge, plastic length, fiber models, and stable and unstable hysteretic behaviour are, accordingly, defined and commented upon. For a deeper understanding of seismic design philosophy and of static and dynamic post-elastic analysis, seismic behavior of different types of reinforced concrete structures (frames, walls) is examined in detail. Next, up-to-date methods for analysis and design are presented. The powerful concept of structural system is defined and systematically used to explain the response to seismic activity, as well as the procedures for analysis and detailing of common building structures. Several case studies are presented. The book is not code-oriented. The structural design codes are subject to constant reevaluation and updating. Rather than presenting code provisions, this book offers a coherent system of notions, concepts and methods, which facilitate understanding and application of any design code. The content of this book is based mainly on the authors’ personal experience which is a combination of their teaching and research activity as well as their work in the private sector as structural designers. The work will serve to help students and researchers, as well as structural designers to better understand the fundamental aspects of behavior and analysis of reinforced concrete structures and accordingly to gain knowledge that will ensure a sound design of buildings.
The use of Buckling Restrained Brace Frames (BRBFs) has been increasing in recent decades due to their ability to provide superior seismic performance and enhance the resilience of buildings against earthquakes. However, not many studies have extensively and thoroughly investigated the response and resiliency of prescriptively designed BRBF buildings to varying types of earthquake hazards. This study fills that research gap by investigating the seismic performance of two code-designed BRBFs prototype buildings subjected to far-field, near field with pulse and without pulse, and long-duration ground motion sets. The first phase of the study investigated the seismic resiliency of the prescriptively designed BRBF buildings and compared them to identical prototypes designed with mass timber PT-CLT rocking walls using the FEMA P-58 methodology to compare seismic losses. The seismic loss investigation was part of a larger study evaluating the two types of structural systems using multiple criteria decision analysis across four performance categories of seismic resiliency, global warming potential, superstructure cost, and durability. The global warming potential and superstructure cost estimate was completed by others, but this study completed the seismic resiliency assessment and multiple criteria decision analysis.The second phase of this dissertation work analyzed the structural response of the two BRBF prototype buildings across four sets of ground motions representing different hazard levels in Seattle, WA. The two prototype buildings were modeled in 3D using OpenSeesPy to understand the effect of different ground motion types on the structural responses. The analysis results showed that near-field motions increase the deformation demands, such as inter-story drift and maximum ductility in the pulse direction. Though BRBFs are not a self-centering systems, only the upper two floors of the mid-rise building experienced residual drift higher than 0.2%, which is the threshold for expecting minor repair and structural realignment. None of the stories had residual inter-story drift exceeding 0.5% drift for any motion sets. Overall, the code minimum based BRBF buildings showed excellent performance across all the different hazard types. However, the one caveat of this analysis was that long-duration motions had significantly higher cumulative ductility demand than other motion sets.Therefore, the final phase of this dissertation works further investigated the cumulative deformation demand on BRBF braces under long-duration motions. It is important to verify the ductility of the braces through analysis or testing because they act as the primary structural fuse to dissipate the earthquake energy. The final study compared different loading protocols from different countries to the nonlinear modeling results of long-duration motions. It was determined that the long duration motions had over 80% probability of exceeding the current AISC 341 required testing protocol. To rectify these issues, a new loading protocol appropriate for long-duration earthquakes was proposed that accounts for the increased plastic deformation demand and matches the cyclic content of the nonlinear dynamic analyses.In conclusion, these studies have demonstrated that prescriptively designed BRBFs that meet code minimum requirements are a high performing lateral force resisting system to a range of earthquake hazards. They have excellent seismic resiliency, even when not optimized during design through nonlinear time history analysis, as is common in performance-based earthquake engineering. Additionally, the code-designed BRBF buildings were not predicted to have high residual inter-story drifts, which means they are highly likely to be repairable with minor adjustments and re-alignment. However, it was identified that long-duration earthquakes will increase the ductility demand on the braces significantly compared to far-field and near-field earthquakes and that current minimum testing requirements do not account for this increase. A new protocol was proposed to rectify this one challenge with BRBFs.
This report, FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings has been developed by the SAC Joint Venture under contract to the Federal Emergency Management Agency (FEMA) to provide organizations engaged in the development of consensus design standards and building code provisions with recommended criteria for the design and construction of new buildings incorporating moment-resisting steel frame construction to resist the effects of earthquakes. It is one of a series of companion publications addressing the issue of the seismic performance of steel moment-frame buildings. The set of companion publications includes: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. This publication provides recommended criteria, supplemental to FEMA-302 - 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria. FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. This publication provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance. FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings. This publication provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. This publication provides recommended specifications for the fabrication and erection of steel moment frames for seismic applications. The recommended design criteria contained in the other companion documents are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications. The information contained in these recommended design criteria, hereinafter referred to as Recommended Criteria, is presented in the form of specific design and performance evaluation procedures together with supporting commentary explaining part of the basis for these recommendations.
The book, after two introductory chapters on seismic design principles and structural seismic analysis methods, proceeds with the detailed description of seismic design methods for steel building structures. These methods include all the well-known methods, like force-based or displacement-based methods, plus some other methods developed by the present authors or other authors that have reached a level of maturity and are applicable to a large class of steel building structures. For every method, detailed practical examples and supporting references are provided in order to illustrate the methods and demonstrate their merits. As a unique feature, the present book describes not just one, as it is the case with existing books on seismic design of steel structures, but various seismic design methods including application examples worked in detail. The book is a valuable source of information, not only for MS and PhD students, but also for researchers and practicing engineers engaged with the design of steel building structures.
Seismic Design for Architects shows how structural requirements for seismic resistance can become an integral part of the design process. Structural integrity does not have to be at the expense of innovative, high standard design in seismically active zones. * By emphasizing design and discussing key concepts with accompanying visual material, architects are given the background knowledge and practical tools needed to deal with aspects of seismic design at all stages of the design process * Seismic codes from several continents are drawn upon to give a global context of seismic design * Extensively illustrated with diagrams and photographs * A non-mathematical approach focuses upon the principles and practice of seismic resistant design to enable readers to grasp the concepts and then readily apply them to their building designs Seismic Design for Architects is a comprehensive, practical reference work and text book for students of architecture, building science, architectural and civil engineering, and professional architects and structural engineers.
The catastrophic earthquakes of the last decades (Mexico City, 1985; Loma Prieta, 1989; Northridge, 1994; Kobe, 1995) have seriously undermined there putation of steel structures, which in the past represented the most suitable solution for seismic resistant structures. Even if in very few cases, the performance of steel joints and members was unexpectedly bad, showing that it was due to some lacks in the current design concept. As a consequence of the lessons learned from the above dramatic events, many progress has been recently achieved in the conception, design and construction, by introducing the new deals of the performance based design, including the differentiation of earthquaketypes and considering all factor influencing the steel structure behaviour under strong ground motions. In this scenario, the aim of the book is to transfer the most recent achievements into practical rules for a safe design of seismic resistant steel structures. The seven Chapters cover the basic principles and design criteria for seismic resistant steel structures, which are applied to the main structural typologies, like moment resistant frames, braced frames and composite structures with particular reference to connections and details.