Download Free Design Guidelines For Assessment Retrofit And Repair Of Bridges For Seismic Performance Book in PDF and EPUB Free Download. You can read online Design Guidelines For Assessment Retrofit And Repair Of Bridges For Seismic Performance and write the review.

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges
This book contains the proceedings of the international workshop “Designing and Building with Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC): State of the Art and Development”, organized by AFGC, the French Association for Civil Engineering and French branch of fib, in Marseille (France), November 17-18, 2009. This workshop was focused on the experience of a lot of recent UHPFRC realizations. Through more than 50 papers, this book details the experience of many countries in UHPFRC construction and design, including projects from Japan, Germany, Australia, Austria, USA, Denmark, the Netherlands, Canada... and France. The projects are categorized as novel architectural solutions, new frontiers for bridges, new equipments and structural components, and extending the service life of structures. The last part presents major research results, durability and sustainability aspects, and the updated AFGC Recommendations on UHPFRC.
For the first time, international guidelines for seismic design of port structures have been compiled in this comprehensive book. These guidelines address the limitations inherent in conventional design, and establish the framework for an evolutionary design strategy based on seismic response and performance requirements. The provisions reflect the diverse nature of port facilities throughout the world, where the required functions of port structures, economic and social environment, and seismic activities may differ from region to region. This book comprises a main text and eight technical commentaries. The main text introduces the reader to basic earthquake engineering concepts and a strategy for performance-based design, while the technical commentaries illustrate specific aspects of seismic analysis and design, and provide examples of various applications of the guidelines. Proven simplified methods and state-of-the-art analysis procedures have been carefully selected and integrated in the guidelines in order to provide a flexible and consistent methodology for the seismic design of port facilities.
This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. - Written by a world renowned author and educator - Seismic design and retrofitting techniques for all structures - Tools improve current building and bridge designs - Latest methods for building earthquake-resistant structures - Combines physical and geophysical science with structural engineering
This manual is an interim revision of the Federal Highway Administration (FHWA) publication "Seismic Retrofitting Guidelines for Highway Bridges", which was published in 1983 as report number FHWA/RD-83/007. It describes an evaluation procedure for retrofitting seismically deficient highway bridges and outlines various measures to upgrade these structures. The guidance provided in this manual is comprehensive in nature and nationally applicable to bridges in different seismic zones. It includes a revised preliminary screening procedure; two methods of detailed evaluation (which include the capacity/demand ratio method and the lateral strength method); and expanded sections on retrofit measures for bearings, columns, footings, foundations, and soils. A new section on the application of seismic isolation to bridge retrofit is also included. The manual is termed an interim revision because the subject matter is still evolving at this time.
It is evident that European earthquake engineering research and design practice is assuming a role of increasing importance on the international scene. This is primarily due to two considerations; firstly the emergence of a core of European earthquake engineers who are co-operating on a long-term basis for the development of seismic design criteria specific to the European environment and secondly the identification of new problems in existing design practice in the USA and in Japan. It is in this context that European earthquake engineering activities and publications are eagerly observed and awaited by the international community. Includes a compact set of papers from leading research institutions, laboratories and companies in Europe, with a healthy number of contributions from elsewhere. It represents the European state-of-the-art and practice in earthquake testing, analysis & design of civil engineering works as well as strong-motion & hazard studies.