Download Free Design Fabrication And Characterization Of A Compact Magnetron Sputtering System For Micro Nano Fabrication Book in PDF and EPUB Free Download. You can read online Design Fabrication And Characterization Of A Compact Magnetron Sputtering System For Micro Nano Fabrication and write the review.

A general rule of thumb for new semiconductor fabrication facilities (fabs) is that revenues from the first year of production must match the capital cost of building the fab itself. With modem fabs routinely exceeding $1 billion to build, this rule serves as a significant barrier to entry for groups seeking to commercialize new semiconductor devices aimed at smaller market segments which require a dedicated process. To address this gap in the industry, we are developing a I" Fab line of dedicated tools which processes small 1-2" wafers and feature the same functionality as large-scale commercial micro/nano fabrication tools, but with a significant reduction in cost and footprint. To enable the envisioned 1" Fab a reality, this thesis describes the design, development and testing of a sputtering physical vapor deposition tool, a critical tool in the 1" Fab line of tools. The tool is designed to be compatible with the 1" Fab's four-module, modular tool infrastructure, and also to allow for sharing of its peripheral equipment with other components of the 1" Fab. The modularity feature allows for multiple tools be created using an interchangeable tool platform while the shared backend equipment feature allows for a sizable cost-saving benefit, as the cost of peripheral equipment for any given tool is up to 70% of the tool's total cost. Our developed sputtering tool features the successful implementation of these two design components with a final build cost of around $25k - roughly one-seventh of the cost of a commercial tool. The sputtering tool's performance was fully characterized for both reactive and nonreactive sputtering processes. The tool's non-reactive metal depositions were examined in detail using a design of experiment response surface model. Deposition rates of up to 5.5 A/s were observed while maintaining a uniformity of ~3% across the wafer. Utilizing a direct sputter technique, this represents a deposition rate that is 4x faster than state of the practice tools while also attaining the same level of uniformity. Alongside the development of metal depositions processes, the reactive sputtering capabilities of the tool were also demonstrated through successful process development for the deposition of Aluminum Nitride (AlN). Three unique operation regions, for AlN reactive sputtering were discovered with the highest quality AlN depositions observed in transition region. Stable and repeatable depositions were achieved via the development of two control methods - voltage control and flow control. Using this optimized process, highly c-axis aligned films with columnar growth structures were observed indicating the production of high quality AlN films. This successfully developed tool alongside its optimized processes is well suited for integration into the 1" Fab, further enabling the realization of our envisioned low-cost micro/nano fabrication platform.
This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.
This book presents a universal mass-production micro/nano integrated fabrication technology, which can be used to realize micro/nano hierarchical structures on Si-based materials and flexible polymeric materials. This fabrication technology has been systematically investigated by using experimental measurements, mechanism analyses, theoretical simulations and so on. Three common materials (i.e., silicon, PDMS and Parylene-C) with micro/nano hierarchical structures have been successfully fabricated, which also show several attractive properties. Furthermore, this book introduces this fabrication technology into microenergy field, and proposes several high-performance nanogenerators, of which practical applications have also been studied in commercial electronic device and biomedical microsystem.
MEMs Materials and Processes Handbook" is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on "Materials" and "Processes". The extensive Material Selection Guide" and a "Material Database" guides the reader through the selection of appropriate materials for the required task at hand. The "Processes" section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs.
Designed for science and engineering students, this text focuses on emerging trends in processes for fabricating MEMS and NEMS devices. The book reviews different forms of lithography, subtractive material removal processes, and additive technologies. Both top-down and bottom-up fabrication processes are exhaustively covered and the merits of the different approaches are compared. Students can use this color volume as a guide to help establish the appropriate fabrication technique for any type of micro- or nano-machine.
Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.