Download Free Design And Testing Of A Blast Resistant Reinforced Concrete Slab System Book in PDF and EPUB Free Download. You can read online Design And Testing Of A Blast Resistant Reinforced Concrete Slab System and write the review.

The objectives of the investigation were to design and model test a blast-resistant reinforced concrete slab system serving as the roof of a basement shelter area. The slab system was designed to offer sufficient radiation and blast protection to insure a survival probability for its occupants of 85 to 95 percent for a fa 15-psi airblast overpressure loading. Static and dynamic tests were conducted on two 1/4-scale models of a prototype shelter. The prototype shelter, as designed, has a reinforced concrete flat slab roof consisting of three 18-foot spans in each direction supported by four interior columns and by a continuous wall around the perimeter. The model included the perimeter walls and different panel configurations which would influence the load-carrying capacity of the prototype structure. The slab system was designed using the empirical method of the 1963 American Concrete Institute Code with modifications to account for the dynamic loading effects. (Author).
Unter "bewehrtem Beton" versteht man eine Kombination von Beton mit anderen, verstärkenden Materialien (meist Stahl). Aus Stahlbetonplatten werden nicht nur Häuser gebaut, sondern auch Straßen und Mauern. Bauingenieure müssen die Merkmale und Einsatzfelder dieser Werkstoffe kennen und Belastungsgrenzen abschätzen. Dieses Buch, das einzige seiner Art, dient Praktikern und Studenten der Bautechnik als kompetenter Begleiter. (01/00)
Unique single reference supports functional and cost-efficient designs of blast resistant buildings Now there's a single reference to which architects, designers, and engineers can turn for guidance on all the key elements of the design of blast resistant buildings that satisfy the new ASCE Standard for Blast Protection of Buildings as well as other ASCE, ACI, and AISC codes. The Handbook for Blast Resistant Design of Buildings features contributions from some of the most knowledgeable and experienced consultants and researchers in blast resistant design. This handbook is organized into four parts: Part 1, Design Considerations, sets forth basic principles, examining general considerations in the design process; risk analysis and reduction; criteria for acceptable performance; materials performance under the extraordinary blast environment; and performance verification for technologies and solution methodologies. Part 2, Blast Phenomena and Loading, describes the explosion environment, loading functions needed for blast response analysis, and fragmentation and associated methods for effects analysis. Part 3, System Analysis and Design, explains the analysis and design considerations for structural, building envelope, component space, site perimeter, and building system designs. Part 4, Blast Resistant Detailing, addresses the use of concrete, steel, and masonry in new designs as well as retrofitting existing structures. As the demand for blast resistant buildings continues to grow, readers can turn to the Handbook for Blast Resistant Design of Buildings, a unique single source of information, to support competent, functional, and cost-efficient designs.
This study was conducted in support of the Defense Civil Preparedness Agency's (DCPA) Crisis Relocation Planning (CRP) program in which existing structures will be upgraded to provide fallout shelters for a relocated population. A demonstration test was conducted in which a residential dwelling was upgraded by placing soil against the walls and on the roof of the structure. The shelter was large enough to house 80 people. Upgrading was accomplished partially by hand labor and machinery. The test showed that a conventional structure could be upgraded and that the shelter occupants using tools and materials found in most homes could if necessary upgrade their shelter during the expected 2- or 3-day period of crisis relocation preceding a nuclear attack.
Studies on blast effects on structures are extremely important due to the increasing risk of bomb blasts throughout the world. Reinforced concrete cantilevered slabs are among the most vulnerable structural elements in a blast loading environment. This book focuses on designs of reinforced concrete cantilevered slabs. The book includes methodologies for blast load estimations and designing of blast resistant structural elements. It provides design envelopes that are useful in determining blast resistant capacities of cantilevered slabs. This book is a result of a comprehensive study on blast resistant structural designs that should be of interest to structural designers and engineers.