Download Free Design And Simulation Of A Novel Hybrid Cooling Cycle For Steam Electricity Generating Stations Book in PDF and EPUB Free Download. You can read online Design And Simulation Of A Novel Hybrid Cooling Cycle For Steam Electricity Generating Stations and write the review.

Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language
This book originates from 35 years of teaching Steam Generators to graduate students at the Politecnico of Milan, and from 45 years of professional activity in this area. This book has been written for practicing designers, users, and engineers of steam generators in order to guide them through practical problems and help avoiding technical mistakes. Technical studies and solutions for various applications are presented, and the author presents some of his original studies.
Compared to the conventional Rankine cycle using water, the ORC can create efficient expansion at low power, avoid superheater and offer higher thermal efficiency in low temperature application. Small-scale ORCs from several kWe to a few hundred kWe offer great potential for meeting the residential demand on heat and power, and are of growing interest in scientific and technical fields. However, one critical problem is the decreased device efficiency and cost-effectiveness that arises when the ORC is scaled down. In this thesis, the ORC is combined with low concentration-ratio solar collectors. The background, research trend, merits and importance of the solar ORC are described. To reduce the thermodynamic irreversibility and the cost of the system, three innovative solutions are proposed: solar ORC without heat transfer fluid (HTF), which employs two-stage collectors and heat storage units; hybrid solar power generation based on ORC and amorphous silicon cells; osmosis-driven solar ORC. Heat collection, storage and power conversion are optimized. The design, construction and test of a prototype are conducted, demonstrating the feasibility of the ORC for small-scale cogeneration. Special attention is paid to the variable operation and parameter design with respect to the condensation temperature.
Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.