Download Free Design And Performance Validation Of Phantoms Used In Conjunction With Optical Measurement Of Tissue Vi Book in PDF and EPUB Free Download. You can read online Design And Performance Validation Of Phantoms Used In Conjunction With Optical Measurement Of Tissue Vi and write the review.

This book highlights recent technological advances, reviews and applications in the field of cardiovascular engineering, including medical imaging, signal processing and informatics, biomechanics, as well as biomaterials. It discusses the use of biomaterials and 3D printing for tissue-engineered heart valves, and also presents a unique combination of engineering and clinical approaches to solve cardiovascular problems. This book is a valuable resource for students, lecturers and researchers in the field of biomedical engineering.
The use of light for probing and imaging biomedical media is promising for the development of safe, noninvasive, and inexpensive clinical imaging modalities with diagnostic ability. The advent of ultrafast lasers has enabled applications of nonlinear optical processes, which allow deeper imaging in biological tissues with higher spatial resolution. This book provides an overview of emerging novel optical imaging techniques, Gaussian beam optics, light scattering, nonlinear optics, and nonlinear optical tomography of tissues and cells. It consists of pioneering works that employ different linear and nonlinear optical imaging techniques for deep tissue imaging, including the new applications of single- and multiphoton excitation fluorescence, Raman scattering, resonance Raman spectroscopy, second harmonic generation, stimulated Raman scattering gain and loss, coherent anti-Stokes Raman spectroscopy, and near-infrared and mid-infrared supercontinuum spectroscopy. The book is a comprehensive reference of emerging deep tissue imaging techniques for researchers and students working in various disciplines.
This book surveys recent advances in theranostics based on magnetic nanoparticles, ultrasound contrast agents, silica nanoparticles and polymeric micelles. It presents magnetic nanoparticles, which offer a robust tool for contrast enhanced MRI imaging, magnetic targeting, controlled drug delivery, molecular imaging guided gene therapy, magnetic hyperthermia, and controlling cell fate. Multifunctional ultrasound contrast agents have great potential in ultrasound molecular imaging, multimodal imaging, drug/gene delivery, and integrated diagnostics and therapeutics. Due to their diversity and multifunctionality, polymeric micelles and silica-based nanocomposites are highly capable of enhancing the efficacy of multimodal imaging and synergistic cancer therapy. This comprehensive book summarizes the main advances in multifunctional nanoprobes for targeted imaging and therapy of gastric cancer, and explores the clinical translational prospects and challenges. Although more research is needed to overcome the substantial obstacles that impede the development and availability of nanotheranostic products, such nontrivial nanoagents are expected to revolutionize medical treatments and help to realize the potential of personalized medicine to diagnose, treat, and follow-up patients with cancer. Zhifei Dai is a Professor at the Department of Biomedical Engineering, College of Engineering, Peking University, China.
This authoritative text/reference presents a comprehensive review of algorithms and techniques for face recognition (FR), with an emphasis on systems that can be reliably used in operational environments. Insights are provided by an international team of pre-eminent experts into the processing of multispectral and hyperspectral face images captured under uncontrolled environments. These discussions cover a variety of imaging sensors ranging from state-of-the-art visible and infrared imaging sensors, to RGB-D and mobile phone image sensors. A range of different biometric modalities are also examined, including face, periocular and iris. This timely volume is a mine of useful information for researchers, practitioners and students involved in image processing, computer vision, biometrics and security.
The accessibility of the skin in vivo has resulted in the development of non-invasive methods in the past 40 years that offer accurate measurements of skin properties and structures from microscopic to macroscopic levels. However, the mechanisms involved in these properties are still only partly understood. Similar to many other domains, including biomedical engineering, numerical modeling has appeared as a complementary key actor for improving our knowledge of skin physiology. This book presents, for the first time, the contributions that focus on scientific computing and numerical modeling to offer a deeper understanding of the mechanisms involved in skin physiology. The book is structured around some skin properties and functions, including optical and biomechanical properties and skin barrier function and homeostasis, with—for each of them—several chapters that describe either biological or physical models at different scales.
This book is concerned with human factors and ergonomics research and developments in the design and use of systems and devices for effective and safe healthcare delivery. It reports on approaches for improving healthcare devices so that they better fit to people’s, including special population’s needs. It also covers assistive devices aimed at reducing occupational risks of health professionals as well as innovative strategies for error reduction, and more effective training and education methods for healthcare workers and professionals. Equal emphasis is given to digital technologies and to physical, cognitive and organizational aspects, which are considered in an integrated manner, so as to facilitate a systemic approach for improving the quality and safety of healthcare service. The book also includes a special section dedicated to innovative strategies for assisting caregivers’, patients’, and people’s needs during pandemic. Based on papers presented at the AHFE 2021 Conference on Human Factors and Ergonomics in Healthcare and Medical Devices, held virtually on 25–29 July, 2021, from USA, the book offers a timely reference guide to both researchers and healthcare professionals involved in the design of medical systems and managing healthcare settings, as well as to healthcare counselors and global health organizations.
Implantable sensing, whether used for transient or long-term monitoring of in vivo physiological, bio-electrical, bio-chemical and metabolic changes, is a rapidly advancing field of research and development. Underpinned by increasingly small, smart and energy efficient designs, they become an integral part of surgical prostheses or implants for both acute and chronic conditions, supporting optimised, context aware sensing, feedback, or stimulation with due consideration of system level impact. From sensor design, fabrication, on-node processing with application specific integrated circuits, to power optimisation, wireless data paths and security, this book provides a detailed explanation of both the theories and practical considerations of developing novel implantable sensors. Other topics covered by the book include sensor embodiment and flexible electronics, implantable optical sensors and power harvesting. Implantable Sensors and Systems – from Theory to Practice is an important reference for those working in the field of medical devices. The structure of the book is carefully prepared so that it can also be used as an introductory reference for those about to enter into this exciting research and developing field.