Download Free Design And Implementation Of A Relative Localization System For Ground And Aerial Robotic Teams Book in PDF and EPUB Free Download. You can read online Design And Implementation Of A Relative Localization System For Ground And Aerial Robotic Teams and write the review.

The main focus of this thesis is to address the relative localization problem of a heterogenous team which comprises of both ground and micro aerial vehicle robots. This team configuration allows to combine the advantages of increased accessibility and better perspective provided by aerial robots with the higher computational and sensory resources provided by the ground agents, to realize a cooperative multi robotic system suitable for hostile autonomous missions. However, in such a scenario, the strict constraints in flight time, sensor pay load, and computational capability of micro aerial vehicles limits the practical applicability of popular map-based localization schemes for GPS denied navigation. Therefore, the resource limited aerial platforms of this team demand simpler localization means for autonomous navigation. Relative localization is the process of estimating the formation of a robot team using the acquired inter-robot relative measurements. This allows the team members to know their relative formation even without a global localization reference, such as GPS or a map. Thus a typical robot team would benefit from a relative localization service since it would allow the team to implement formation control, collision avoidance, and supervisory control tasks, independent of a global localization service. More importantly, a heterogenous team such as ground robots and computationally constrained aerial vehicles would benefit from a relative localization service since it provides the crucial localization information required for autonomous operation of the weaker agents. This enables less capable robots to assume supportive roles and contribute to the more powerful robots executing the mission. Hence this study proposes a relative localization-based approach for ground and micro aerial vehicle cooperation, and develops inter-robot measurement, filtering, and distributed computing modules, necessary to realize the system. The research study results in three significant contributions. First, the work designs and validates a novel inter-robot relative measurement hardware solution which has accuracy, range, and scalability characteristics, necessary for relative localization. Second, the research work performs an analysis and design of a novel nonlinear filtering method, which allows the implementation of relative localization modules and attitude reference filters on low cost devices with optimal tuning parameters. Third, this work designs and validates a novel distributed relative localization approach, which harnesses the distributed computing capability of the team to minimize communication requirements, achieve consistent estimation, and enable efficient data correspondence within the network. The work validates the complete relative localization-based system through multiple indoor experiments and numerical simulations. The relative localization based navigation concept with its sensing, filtering, and distributed computing methods introduced in this thesis complements system limitations of a ground and micro aerial vehicle team, and also targets hostile environmental conditions. Thus the work constitutes an essential step towards realizing autonomous navigation of heterogenous teams in real world applications.
SYROCO'2003 covered areas and aspects of robot control Topics: Robot control techniques (adaptive, robust, learning) Modeling and identification Control of discrete / continuous-time robotic systems Non-holonomic robotic systems Intelligent control Control based on sensing Control design and architectures Force and compliance control Grasp control Flexible robots Micro robots Mobile robots Walking robots Humanoid robots Teleoperation and man / machine dynamic systems Multi-Robot-Systems, cooperative robots Applications: space, underwater, civil engineering, surgery, entertainment, mining, etc. *Provides the latest research on Robotics *Contains contributions written by experts in the field. *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.
This work describes the development of a collaborative localization and state estimation framework for a team of small autonomous ground robots working in a heterogeneous team of aerial and larger ground robots in an indoor environment. Specifically, we envision a scenario where aerial vehicles cooperating with mobile ground robots and operating with smaller less capable robots can map, explore, monitor, and search for objectives of interest within an indoor environment. This work examines specifically the localization of the small ground robots using a modified version of the bearings-only localization scheme. Each robot is equipped with an LED-based identifier/marker, a color camera, wheel encoders, and wireless communication capabilities. Collaborative localization and state estimation is achieved via on-board vision processing and local inter-agent communication. An approach for the localization of a primarily static system for the purpose of determing the initial pose of the team is presented and demonstrated in simulation. A similar methodology for the dynamic localization of a team in motion is also described and validated experimentally. Experimental results demonstrated that this system was able to locate a robot in the workspace to within 1.5 robot body lengths.
In the early years of robotics and automated vehicles, the fight was against nature and not against a manifestly intelligent opponent. In military environments, however, where prediction and anticipation are complicated by the existence of an intelligent adversary, it is essential to retain human operators in the control loop. Future combat systems will require operators to control and monitor aerial and ground robotic systems and to act as part of larger teams coordinating diverse robotic systems over multiple echelons. The National Research Council organized a workshop to identify the most important human-related research and design issues from both the engineering and human factors perspectives, and develop a list of fruitful research directions. Interfaces for Ground and Air Military Robots summarizes the presentations and discussions from this workshop.
This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.
Aerial robotic manipulation integrates concepts and technologies coming from unmanned aerial systems and robotics manipulation. It includes not only kinematic, dynamics, aerodynamics and control but also perception, planning, design aspects, mechatronics and cooperation between several aerial robotics manipulators. All these topics are considered in this book in which the main research and development approaches in aerial robotic manipulation are presented, including the description of relevant systems. In addition of the research aspects, the book also includes the deployment of real systems both indoors and outdoors, which is a relevant characteristic of the book because most results of aerial robotic manipulation have been validated only indoor using motion tracking systems. Moreover, the book presents two relevant applications: structure assembly and inspection and maintenance, which has started to be applied in the industry. The Chapters of the book will present results of two main European Robotics Projects in aerial robotics manipulation: FP7 ARCAS and H2020 AEROARMS. FP7 ARCAS defined the basic concepts on aerial robotic manipulation, including cooperative manipulation. The H2020 AEROARMS on aerial robot with multiple arms and advanced manipulation capabilities for inspection and maintenance has two general objectives: (1) development of advanced aerial robotic manipulation methods and technologies, including manipulation with dual arms and multi-directional thrusters aerial platforms; and (2) application to the inspection and maintenance.
The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/
In the event of large crises (earthquakes, typhoons, floods, ...), a primordial task of the fire and rescue services is the search for human survivors on the incident site. This is a complex and dangerous task, which - too often - leads to loss of lives among the human crisis managers themselves. This book explains how unmanned search can be added to the toolkit of the search and rescue workers, offering a valuable tool to save human lives and to speed up the search and rescue process. The introduction of robotic tools in the world of search and rescue is not straightforward, due to the fact that the search and rescue context is extremely technology-unfriendly, meaning that very robust solutions, which can be deployed extremely quickly, are required. Multiple research projects across the world are tackling this problem and in this book, a special focus is placed on showcasing the results of the European Union ICARUS project on this subject. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, so that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them in order to learn to use the ICARUS system. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 285417. The publishing of this book was funded by the EC FP7 Post-Grant Open Access Pilot programme.
Wireless localization techniques are an area that has attracted interest from both industry and academia, with self-localization capability providing a highly desirable characteristic of wireless sensor networks. Localization Algorithms and Strategies for Wireless Sensor Networks encompasses the significant and fast growing area of wireless localization techniques. This book provides comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms. A useful compilation for academicians, researchers, and practitioners, this Premier Reference Source contains relevant references and the latest studies emerging out of the wireless sensor network field.
This book captures the latest results and techniques for cooperative localization and navigation drawn from a broad array of disciplines. It provides the reader with a generic and comprehensive view of modeling, strategies, and state estimation methodologies in that fields. It discusses the most recent research and novel advances in that direction, exploring the design of algorithms and architectures, benefits, and challenging aspects, as well as a potential broad array of disciplines, including wireless communication, indoor localization, robotics, emergency rescue, motion analysis, etc.