Download Free Design And Fabrication Methods In Chemical Micro Process Engineering Book in PDF and EPUB Free Download. You can read online Design And Fabrication Methods In Chemical Micro Process Engineering and write the review.

This edition of 'Micro Process Engineering' was originally published in the successful series 'Advanced Micro & Nanosystems'. Authors from leading industrial players and research institutions present a concise and didactical introduction to Micro Process Engineering, the combination of microtechnology and process engineering into a most promising and powerful tool for revolutionizing chemical processes and industrial mass production of bulk materials, fine chemicals, pharmaceuticals and many other products. The book takes the readers from the fundamentals of engineering methods, transport processes, and fluid dynamics to device conception, simulation and modelling, control interfaces and issues of modularity and compatibility. Fabrication strategies and techniques are examined next, focused on the fabrication of suitable microcomponents from various materials such as metals, polymers, silicon, ceramics and glass. The book concludes with actual applications and operational aspects of micro process systems, giving broad coverage to industrial efforts in America, Europe and Asia as well as laboratory equipment and education.
Micro process engineering is approaching both academia and industry. With the provision of micro devices, systems and whole plants by commercial suppliers, one main barrier for using these units has been eliminated. This book focuses on processes and their plants rather than on devices: what is 'before', 'behind' and 'around' micro device fabrication - and gives a comprehensive and detailed overview on the micro-reactor plants and three topic-class applications which are mixing, fuel processing, and catalyst screening. Thus, the book reflects the current level of development from 'micro-reactor design' to 'micro-reactor process design'.
This three-volume handbook provides an overview of the key aspects of micro process engineering. Volume 1 covers the fundamentals, operations and catalysts, volume 2 examines devices, reactions and applications, with volume 3 rounding off the trilogy with system, process and plant engineering. Fluid dynamics, mixing, heat/mass transfer, purification and separation microstructured devices and microstructured reactors are explained in the first volume. Volume 2 segments microreactor design, fabrication and assembly, bulk and fine chemistry, polymerisation, fuel processing and functional materials into understandable parts. The final volume of the handbook addresses microreactor systems design and scale-up, sensing, analysis and control, chemical process engineering, economic and eco-efficiency analyses as well as microreactor plant case studies in one book. Together, this 3-volume handbook explains the science behind micro process engineering to the scale-up and their real life industrial applications.
Micro process engineering is approaching both academia and industry. With the provision of micro devices and systems by commercial suppliers, one main barrier for using these units has been eliminated. More and more they become familiar, thereby being one facet of the upheaval in chemical industry. This book focuses on processes rather than on devices: what is 'before' and 'behind' micro device fabrication. A comprehensive and detailed overview is given on: - A multi-faceted, hierarchic analysis of chemical micro process technology - Modelling and simulation of micro reactors - Liquid- and liquid/liquid-phase reactions - Gas/liquid reactions - Gas-phase reactions (heterogeneous catalysis)
The European Symposium on Computer Aided Process Engineering (ESCAPE) series presents the latest innovations and achievements of leading professionals from the industrial and academic communities. The ESCAPE series serves as a forum for engineers, scientists, researchers, managers and students to present and discuss progress being made in the area of computer aided process engineering (CAPE). European industries large and small are bringing innovations into our lives, whether in the form of new technologies to address environmental problems, new products to make our homes more comfortable and energy efficient or new therapies to improve the health and well being of European citizens. Moreover, the European Industry needs to undertake research and technological initiatives in response to humanity's "Grand Challenges," described in the declaration of Lund, namely, Global Warming, Tightening Supplies of Energy, Water and Food, Ageing Societies, Public Health, Pandemics and Security. Thus, the Technical Theme of ESCAPE 21 will be "Process Systems Approaches for Addressing Grand Challenges in Energy, Environment, Health, Bioprocessing & Nanotechnologies."
In this book, the fundamentals of chemical engineering are presented with respect to applications in micro system technology, microfluidics, and transport processes within microstructures. Special features of the book include the state-of-the-art in micro process engineering, a detailed treatment of transport phenomena for engineers, and a design methodology from transport effects to economic considerations.
Selecting and bringing together matter provided by specialists, this project offers comprehensive information on particular cases of heat exchangers. The selection was guided by actual and future demands of applied research and industry, mainly focusing on the efficient use and conversion energy in changing environment. Beside the questions of thermodynamic basics, the book addresses several important issues, such as conceptions, design, operations, fouling and cleaning of heat exchangers. It includes also storage of thermal energy and geothermal energy use, directly or by application of heat pumps. The contributions are thematically grouped in sections and the content of each section is introduced by summarising the main objectives of the encompassed chapters. The book is not necessarily intended to be an elementary source of the knowledge in the area it covers, but rather a mentor while pursuing detailed solutions of specific technical problems which face engineers and technicians engaged in research and development in the fields of heat transfer and heat exchangers.
A comprehensive look at existing technologies and processes for continuous manufacturing of pharmaceuticals As rising costs outpace new drug development, the pharmaceutical industry has come under intense pressure to improve the efficiency of its manufacturing processes. Continuous process manufacturing provides a proven solution. Among its many benefits are: minimized waste, energy consumption, and raw material use; the accelerated introduction of new drugs; the use of smaller production facilities with lower building and capital costs; the ability to monitor drug quality on a continuous basis; and enhanced process reliability and flexibility. Continuous Manufacturing of Pharmaceuticals prepares professionals to take advantage of that exciting new approach to improving drug manufacturing efficiency. This book covers key aspects of the continuous manufacturing of pharmaceuticals. The first part provides an overview of key chemical engineering principles and the current regulatory environment. The second covers existing technologies for manufacturing both small-molecule-based products and protein/peptide products. The following section is devoted to process analytical tools for continuously operating manufacturing environments. The final two sections treat the integration of several individual parts of processing into fully operating continuous process systems and summarize state-of-art approaches for innovative new manufacturing principles. Brings together the essential know-how for anyone working in drug manufacturing, as well as chemical, food, and pharmaceutical scientists working on continuous processing Covers chemical engineering principles, regulatory aspects, primary and secondary manufacturing, process analytical technology and quality-by-design Contains contributions from researchers in leading pharmaceutical companies, the FDA, and academic institutions Offers an extremely well-informed look at the most promising future approaches to continuous manufacturing of innovative pharmaceutical products Timely, comprehensive, and authoritative, Continuous Manufacturing of Pharmaceuticals is an important professional resource for researchers in industry and academe working in the fields of pharmaceuticals development and manufacturing.
Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors