Download Free Design And Development Of Formula Sae Front Suspension System Book in PDF and EPUB Free Download. You can read online Design And Development Of Formula Sae Front Suspension System and write the review.

The suspension system of a FSAE (Formula Society of Automotive Engineers) vehicle is a vital system with many functions that include providing vertical compliance so the wheels can follow the uneven road, maintaining the wheels in the proper steer and camber attitudes to the road surface and reacting to the control forces produced by the tires (acceleration, braking and cornering). The members that comprise the suspension are subjected to a variety of dynamic loading conditions – it is imperative that they are designed properly to ensure the safety and performance of the vehicle. The goal of this research is to develop a model for predicting the reaction forces in the suspension members based on the expected load scenarios the vehicle will undergo. This model is compared to the current FSAE vehicle system and the design process is explained. The limitations of this model are explored and future methodologies and improvement techniques are discussed.
Hand-selected by racing engineer legend Carroll Smith, the 28 SAE Technical Papers in this book focus on the chassis and suspension design of pure racing cars, an area that has traditionally been - farmed out - to independent designers or firms since the early 1970s. Smith believed that any discussion of vehicle dynamics must begin with a basic understanding of the pneumatic tire, the focus of the first chapter. The racing tire connects the racing car to the track surface by only the footprints of its four tires. Through the tires, the driver receives most of the sensory information needed to maintain or regain control of the race car at high force levels. The second chapter, focusing on suspension design, is an introduction to this complex and fascinating subject. Topics covered include chassis stiffness and flexibility, suspension tuning on the cornering of a Winston Cup race car, suspension kinematics, and vehicle dynamics of road racing cars. Chapter 3 addresses the design of the racing chassis design and how aerodynamics affect the chassis, and the final chapter on materials brings out the fact that the modern racing car utilizes carbon construction to the maximum extent allowed by regulations. These technical papers, written between 1971 and 2003, offer what Smith believed to be the best and most practical nuggets of racing chassis and suspension design information.
This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach