Download Free Design And Control Of Active Power Filters Towards The Decarbonisation Of Smart Grid Networks Book in PDF and EPUB Free Download. You can read online Design And Control Of Active Power Filters Towards The Decarbonisation Of Smart Grid Networks and write the review.

Design and Control of Active Power Filters towards the Decarbonisation of Smart Grid Networks helps readers optimize grid stability and power quality using active power filters in transitioning decarbonized power systems moving from high voltage to low voltage distributed smart networks. The work opens with an extensive foundation in in grid stability and power quality optimization, but then goes on to discuss advanced design, control, integration and placement considerations for APFs for smart grids with high penetration of VRE and EV. Integration topologies and the placement of APFs in these VRE integrated networks are also discussed. Finally, applied solutions on design, control and integration of APFs in microgrid networks are presented before parallel operation and distributed design and control issues are reviewed. Numerous case studies support the work, and a expansive discussion of future trends for APFs in smart grids rounds out the content.
The book contains select proceedings of the International Conference on Smart Grid Energy Systems and Control (SGESC 2023). The proceedings are divided into 02 volumes, and this volume focuses on the Decarbonisation and Digitization of the Energy System. The book covers the important topics on the smart grid/microgrids and control aspects, optimal energy scheduling, distributed generation, wind energy for remote electrification, forecasting of loads and daily energy demand, reactive power management, Volt-Var control, reactive power procurement, and ancillary services, the role of FACTS devices for reactive power management and control, feasibility study of PV/Wind hybrid systems, electricity markets, stability of the power system network, energy storage systems and electrical vehicles. This book is a unique collection of 27 chapters from different areas with a common theme and will be immensely useful to academic researchers and practitioners in the industry.
As energy industries produce ever more data, firms are harnessing greater computing power, advances in data science, and increased digital connectivity to exploit that data. These trends have the potential to transform the way energy is produced, transported, and consumed.
This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.
With the effects of climate change already upon us, the need to cut global greenhouse gas emissions is nothing less than urgent. It’s a daunting challenge, but the technologies and strategies to meet it exist today. A small set of energy policies, designed and implemented well, can put us on the path to a low carbon future. Energy systems are large and complex, so energy policy must be focused and cost-effective. One-size-fits-all approaches simply won’t get the job done. Policymakers need a clear, comprehensive resource that outlines the energy policies that will have the biggest impact on our climate future, and describes how to design these policies well. Designing Climate Solutions: A Policy Guide for Low-Carbon Energy is the first such guide, bringing together the latest research and analysis around low carbon energy solutions. Written by Hal Harvey, CEO of the policy firm Energy Innovation, with Robbie Orvis and Jeffrey Rissman of Energy Innovation, Designing Climate Solutions is an accessible resource on lowering carbon emissions for policymakers, activists, philanthropists, and others in the climate and energy community. In Part I, the authors deliver a roadmap for understanding which countries, sectors, and sources produce the greatest amount of greenhouse gas emissions, and give readers the tools to select and design efficient policies for each of these sectors. In Part II, they break down each type of policy, from renewable portfolio standards to carbon pricing, offering key design principles and case studies where each policy has been implemented successfully. We don’t need to wait for new technologies or strategies to create a low carbon future—and we can’t afford to. Designing Climate Solutions gives professionals the tools they need to select, design, and implement the policies that can put us on the path to a livable climate future.
This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.
Chapter “A Multi-functional Design Approach to Deal with New Urban Challenges” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Buildings are the largest energy consuming sector in the world, and account for over one-third of total final energy consumption and an equally important source of carbon dioxide (CO2) emissions. Achieving significant energy and emissions reduction in the buildings sector is a challenging but achievable policy goal. Transition to Sustainable Buildings presents detailed scenarios and strategies to 2050, and demonstrates how to reach deep energy and emissions reduction through a combination of best available technologies and intelligent public policy. This IEA study is an indispensible guide for decision makers, providing informative insights on: cost-effective options, key technologies and opportunities in the buildings sector; solutions for reducing electricity demand growth and flattening peak demand; effective energy efficiency policies and lessons learned from different countries; future trends and priorities for ASEAN, Brazil, China, the European Union, India, Mexico, Russia, South Africa and the United States; implementing a systems approach using innovative products in a cost effective manner; and pursuing whole-building (e.g. zero energy buildings) and advanced-component policies to initiate a fundamental shift in the way energy is consumed.
Climate change resulting from CO2 and other greenhouse gas emissions poses a huge threat to human welfare. To contain that threat, the world needs to cut emissions by about 50 per cent by 2050, and to start cutting emissions now. A global agreement to take action is vital. A fair global deal will require the UK to cut emissions by at least 80 per cent below 1990 levels by 2050. In this report, the Committee on Climate Change explains why the UK should aim for an 80 per cent reduction by 2050 and how that is attainable, and then recommends the first three budgets that will define the path to 2022. But the path is attainable at manageable cost, and following it is essential if the UK is to play its fair part in avoiding the far higher costs of harmful climate change. Part 1 of the report addresses the 2050 target. The 80 per cent target should apply to the sum of all sectors of the UK economy, including international aviation and shipping. The costs to the UK from this level of emissions reduction can be made affordable - estimated at between 1-2 per cent of GDP in 2050. In part 2, the Committee sets out the first three carbon budgets covering the period 2008-22, and examines the feasible reductions possible in various sectors: decarbonising the power sector; energy use in buildings and industry; reducing domestic transport emissions; reducing emissions of non-CO2 greenhouse gases; economy wide emissions reductions to meet budgets. The third part of the report examines wider economic and social impacts from budgets including competitiveness, fuel poverty, security of supply, and differences in circumstances between the regions of the UK.
The world is currently undergoing an historic energy transition, driven by increasingly stringent decarbonisation policies and rapid advances in low-carbon technologies. The large-scale shift to low-carbon energy is disrupting the global energy system, impacting whole economies, and changing the political dynamics within and between countries. This open access book, written by leading energy scholars, examines the economic and geopolitical implications of the global energy transition, from both regional and thematic perspectives. The first part of the book addresses the geopolitical implications in the world’s main energy-producing and energy-consuming regions, while the second presents in-depth case studies on selected issues, ranging from the geopolitics of renewable energy, to the mineral foundations of the global energy transformation, to governance issues in connection with the changing global energy order. Given its scope, the book will appeal to researchers in energy, climate change and international relations, as well as to professionals working in the energy industry.