Download Free Design And Construction Of Ground Anchors Book in PDF and EPUB Free Download. You can read online Design And Construction Of Ground Anchors and write the review.

Primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure, anchor plates play an important role in the design of structures (including seawalls, transmission towers, tunnels, buried pipelines, and retaining walls). Design and Construction of Soil Anchor Plates focuses on the various theories based on the design and construction techniques of anchor plates in soil mechanics. The focus of this reference is on design methods, theories, and procedures for constructing permanent or temporary ground anchors and anchored systems. Topics include: General Requirements of Vertical Anchor Plates and Design Criteria, Estimation of Ultimate Capacity in Vertical Anchor Plates, General Requirements of Vertical Anchor Plates and Design Criteria, Type and Length of Inclined Anchor Plates, Early Theories on Anchor Plates in Multi-Layers Soil, and Basic Theories on Passive Pressure in Vertical Anchor Plates. With this reference, researchers and designers will find a valuable guide to the various theories, techniques, and equations for anchor design. - Basic theories on passive pressure in vertical anchor plates - Estimation of ultimate capacity in vertical anchor plates - Uplift capacity for shallow anchor plates - Requirements of vertical anchor plates and design criteria - Type and length of inclined anchor plates
Treating anchorages as a direct application of the laws of statics and the theories governing the transfer of load, this book focuses on designs that are safe and reasonably priced. It is divided into two parts. Following a general introduction in the first chapter, Part One goes on to explore anchor systems, components, installation and construction details. Presents special anchor systems such as extractable, compression-type, multibell, and regroutable anchors. Analyzes the transfer of load and its relation to failure modes and anchor load capacity; deals with design considerations; covers mechanisms and types of corrosion; and details anchor stressing, testing programs, and evaluation standards. Part Two considers uses and applications and design aspects of anchored structures; presents design examples of practical value and reasonable simplicity; and incorporates examples and case histories.
Anchors are primarily used in the construction of foundations of earth-supported and earth-retaining structures. The fundamental reason for using earth anchors in construction is to transmit the outwardly directed load to the soil at a greater depth and/or farther away from the structure. Although earth anchors have been used in practice for several hundred years, proper theoretical developments for purposes of modern engineering designs have taken place only during the past 40 to 45 years. This book summarizes most theoretical and experimental works directed toward the development of proper relationships for ultimate and allowable holding capacity of earth anchors. J. Ross Publishing offers a supplemental download — A customizable PowerPoint instructional slide presentation prepared by the authors that complements the material covered in the book, chapter-by-chapter.
More than ten years have passed since the first edition was published. During that period there have been a substantial number of changes in geotechnical engineering, especially in the applications of foundation engineering. As the world population increases, more land is needed and many soil deposits previously deemed unsuitable for residential housing or other construction projects are now being used. Such areas include problematic soil regions, mining subsidence areas, and sanitary landfills. To overcome the problems associated with these natural or man-made soil deposits, new and improved methods of analysis, design, and implementation are needed in foundation construction. As society develops and living standards rise, tall buildings, transportation facilities, and industrial complexes are increasingly being built. Because of the heavy design loads and the complicated environments, the traditional design concepts, construction materials, methods, and equipment also need improvement. Further, recent energy and material shortages have caused additional burdens on the engineering profession and brought about the need to seek alternative or cost-saving methods for foundation design and construction.
This book presents state-of-the-practice information on the design and installation of cement-grouted ground anchors and anchored systems for highway applications. The anchored systems discussed include flexible anchored walls, slopes supported using ground anchors, landslide stabilization systems, and structures that incorporate tiedown anchors. This book draws extensively in describing issues such as subsurface investigation and laboratory testing, basic anchoring principles, ground anchor load testing, and inspection of construction materials and methods used for anchored systems. This book provides detailed information on design analyses for ground anchored systems. Topics discussed include selection of design earth pressures, ground anchor design, design of corrosion protection system for ground anchors, design of wall components to resist lateral and vertical loads, evaluation of overall anchored system stability, and seismic design of anchored systems. Also included in this book are two detailed design examples and technical specifications for ground anchors and for anchored walls.
This volume presents the proceedings of the first major international conference for over twenty years on the state-of-the-art of ground anchorage technology. Practical issues relating to construction and installation of anchorages are considered in a series of examples of engineering projects from around the world.
This international handbook is essential for geotechnical engineers and engineering geologists responsible for designing and constructing piled foundations. It explains general principles and practice and details current types of pile, piling equipment and methods. It includes calculations of the resistance of piles to compressive loads, pile groups under compressive loading, piled foundations for resisting uplift and lateral loading and the structural design of piles and pile groups. Marine structures, miscellaneous problems (including machinery foundations, underpinning, mining subsidence areas, contracts and frozen ground), durability of piled foundations, ground investigations, and pile testing are also covered. It introduces the 2005 version of Eurocode7, BS 8004 and other codes, and refers to BS 6349 on maritime structures, and new forms of civil engineering contracts suitable for piling projects. It includes numerous worked examples to the codes, many based on actual problems. It also gives very comprehensive information for students.