Download Free Design And Construction Integration Of A Continuous Precast Prestressed Concrete Bridge System Book in PDF and EPUB Free Download. You can read online Design And Construction Integration Of A Continuous Precast Prestressed Concrete Bridge System and write the review.

An effective, viable design solution for the elevated viaduct guideway for Universal Freight Shuttle (UFS) system championed by Texas Transportation Institute (TTI) is presented. The proposed precast elevated UFS bridge system is analyzed for the operational vehicular loading as provided by TTI and a number of design alternatives for the various bridge components are provided. These includes: the design of the fully precast deck panels for long continuous spans, design of the shear connectors resisting interface shear at bridge deck-girder interface, design of structurally efficient and cost-effective trough girders and its design alternative with I-girders, and economic and long-term serviceable design of bridge piers. A literature review and study of the existing precast bridges is presented for the state-of-the-art and practice, design specifications and publications by AASHTO, State Department of Transportation and other agencies. These existing systems are refined to determine the most appropriate specification for the proposed bridge components by integrating the planning, design, fabrication and construction techniques to ensure high precision freight shuttle movement, construction feasibility, safety, life-cycle cost, durability and serviceability requirements. The design concept presented is a deviation from the conventional railways and highways design. The best practices and specifications of AASHTO and AREMA are combined suitably in this research to suit the major requirements of the project. A combination of the design philosophy with appropriate construction techniques has been blended to devise a system which is efficient for offsite manufacture of components for construction of the bridge and adaptable to the different bridge configurations. Based on the design results, it is found that precast concrete deck panels in combination with precast, prestressed concrete trough girders provides the most efficient superstructure solution for this project. The Damage Avoidance Design for the precast bridge piers along with the precast superstructure provides a system with comparable structural performance along with other benefits such as long term serviceability, economical sections, practically transportable units, modular simplicity for relocation as desired and ability to offer space for commercial usage. The steps for construction of the bridge is schematically presented and sequentially explained. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/150928
Prestressed concrete decks are commonly used for bridges with spans between 25m and 450m and provide economic, durable and aesthetic solutions in most situations where bridges are needed. Concrete remains the most common material for bridge construction around the world, and prestressed concrete is frequently the material of choice. Extensively illustrated throughout, this invaluable book brings together all aspects of designing prestressed concrete bridge decks into one comprehensive volume. The book clearly explains the principles behind both the design and construction of prestressed concrete bridges, illustrating the interaction between the two. It covers all the different types of deck arrangement and the construction techniques used, ranging from in-situ slabs and precast beams; segmental construction and launched bridges; and cable-stayed structures. Included throughout the book are many examples of the different types of prestressed concrete decks used, with the design aspects of each discussed along with the general analysis and design process. Detailed descriptions of the prestressing components and systems used are also included. Prestressed Concrete Bridges is an essential reference book for both the experienced engineer and graduate who want to learn more about the subject.
Examining the fundamental differences between design and analysis, Robert Benaim explores the close relationship between aesthetic and technical creativity and the importance of the intuitive, more imaginative qualities of design that every designer should employ when designing a structure. Aiding designers of concrete bridges in developing an intu
Concrete bridges are an important part of today's road infrastructure. An important part of those concrete bridges is to a large extent prefabricated. Precast concrete enables all the advantages of an industrialized process to be fully utilized. Contemporary concrete mixtures are used to realize high-strength bridge girders and piers that exactly meet the requirements set, both structurally and aesthetically, with a small ecological footprint. Sustainable and durable! On the construction site, there is no need for complex formwork, the execution time is drastically reduced and where road, water and rail traffic on or under the bridge has to be temporarily interrupted, it is only minimally inconvenienced during the execution of the project. There is a wide variety of prefabricated bridges. In 2004, the fib commission on prefabrication already published the Bulletin 29 Precast concrete bridges which, in addition to the history of prefabricated bridges, also gave an overview of the different bridge types and structural systems. This document elaborates on one specific structural system: the continuous bridge. Task Group 6.5 "Precast concrete bridges" discusses in detail how to achieve continuity over the piers with precast elements. This bulletin bundles the experiences of experts in the field of bridge design so that less experienced designers would be able to identify the points of attention and make a correct design. In addition to the theoretical considerations, the principles are tested against three realizations in the USA and Europe. Commission 6 thanks the Co-Conveners Maher Tadros and Hugo Corres and all active members of the Task Group for sharing their knowledge and experience and for the successful realization of this bulletin.
Segmental concrete bridges have become one of the main options for major transportation projects world-wide. They offer expedited construction with minimal traffic disruption, lower life cycle costs, appealing aesthetics and adaptability to a curved roadway alignment. The literature is focused on construction, so this fills the need for a design-oriented book for less experienced bridge engineers and for senior university students. It presents comprehensive theory, design and key construction methods, with a simple design example based on the AASHTO LRFD Design Specifications for each of the main bridge types. It outlines design techniques and relationships between analytical methods, specifications, theory, design, construction and practice. It combines mathematics and engineering mechanics with the authors’ design and teaching experience.
The traveling public has no patience for prolonged, high cost construction projects. This puts highway construction contractors under intense pressure to minimize traffic disruptions and construction cost. Actively promoted by the Federal Highway Administration, there are hundreds of accelerated bridge construction (ABC) construction programs in the United States, Europe and Japan. Accelerated Bridge Construction: Best Practices and Techniques provides a wide range of construction techniques, processes and technologies designed to maximize bridge construction or reconstruction operations while minimizing project delays and community disruption. - Describes design methods for accelerated bridge substructure construction; reducing foundation construction time and methods by using pile bents - Explains applications to steel bridges, temporary bridges in place of detours using quick erection and demolition - Covers design-build systems' boon to ABC; development of software; use of fiber reinforced polymer (FRP) - Includes applications to glulam and sawn lumber bridges, precast concrete bridges, precast joints details; use of lightweight aggregate concrete, aluminum and high-performance steel