Download Free Design And Analysis Of A Pulse Doppler Radar Book in PDF and EPUB Free Download. You can read online Design And Analysis Of A Pulse Doppler Radar and write the review.

En lærebog i radarteknik. Beskriver systematisk alle væsentlige sider af radarteknikken.
High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm. Lee, Jonggil Unspecified Center AIRBORNE EQUIPMENT; DETECTION; HAZARDS; METEOROLOGICAL RADAR; PULSE DOPPLER RADAR; SIGNAL PROCESSING; STATISTICAL ANALYSIS; WEATHER; WIND SHEAR; WIND VELOCITY; ALGORITHMS; CLUTTER; ERRORS; ESTIMATES; ESTIMATING; HIGH RESOLUTION; LOW ALTITUDE; LOW FREQUENCIES; SIMULATION; SPECTRA...
The book is organized into three parts, each one building on the material of the previous sections. Part I (Chapters 1-8) covers the basic principles to lay sound foundations for the following parts of the book. It emphasizes classic processing techniques, especially the fast Fourier transform (FFT), and microwave engineering issues, antennas, and hardware. The second part of the book deals with the theory and techniques specific to pulse Doppler radar. This is subdivided into Part IIA (Chapters 9-10), which covers high PRF pulse Doppler, and Part IIB (Chapters 11-15), which covers medium PRF pulse Doppler. A major theme is that of PRF selection and optimization, other waveform design issues, and the problem of ghosting. While high and medium PRF pulse Doppler techniques have become synonymous with airborne fire control radars, they are used over a broad spectrum of airborne and surface-based radar applications. Part II does emphasize the airborne radar case, but it does not neglect the surface-based radar. Finally, Part III (Chapters 16-19) presents a series of four case studies. Each of these case studies applies the material of Part II whilst also highlighting additional radar techniques (and, in some cases, non-radar considerations) specific to the application. Such is the prevalence of pulse Doppler radars today; the number of case studies that could have been considered is well into double figures. However, the four presented here suffice to illustrate the wide variety of pulse Doppler radar applications.
This newly revised and updated edition of the classic Artech House book, MTI and Pulsed Doppler Radar, offers you a complete and current presentation of the subject. You find expert radar design and analysis guidance, as well as clear descriptions and characteristics of modern Doppler radars that cannot be found in any other book. The second edition includes a new interactive CD-ROM with MATLAB software to help save you time with your challenging work in the field. From fundamental principles, Doppler radar waveform design and filtering, Doppler radar performance measures, and clutter properties and data - to optimum radar Doppler processing, MTI systems, pulsed Doppler systems, and special topics in Doppler radar systems, this comprehensive resource offers in depth discussions on a wide range of critical topics for your radar design projects. This detailed reference is supported with over 350 illustrations and more than 730 equations. CD-ROM Included: Contains time-saving MATLAB software that serves as a valuable tool for the analysis and design of MTI and Pulsed Doppler Radar. The disc also includes several full-color images that support key topics discussed in the book.
This resource covers basic concepts and modeling examples for the three “pillars” of EW: Electronic Attack (EA) systems, Electronic Protection (EP) techniques, and Electronic Support (ES). It develops techniques for the modeling and simulation (M&S) of modern radar and electronic warfare (EW) systems and reviews radar principles, including the radar equation. M&S techniques are introduced, and example models developed in MATLAB and Simulink are presented and discussed in detail. These individual models are combined to create a full end-to-end engineering engagement simulation between a pulse-Doppler radar and a target. The radar-target engagement model is extended to include jamming models and is used to illustrate the interaction between radar and jamming signals and the impact on radar detection and tracking. In addition, several classic EA techniques are introduced and modeled, and the effects on radar performance are explored. This book is a valuable resource for engineers, scientists, and managers who are involved in the design, development, or testing of radar and EW systems. It provides a comprehensive overview of the M&S techniques that are used in these systems, and the book's many examples and case studies provide a solid foundation for understanding how these techniques can be applied in practice.
Simulation is integral to the successful design of modern radar systems, and there is arguably no better software for this purpose than MATLAB. But software and the ability to use it does not guarantee success. One must also: Ö Understand radar operations and design philosophy Ö Know how to select the radar parameters to meet the design requirements Ö Be able to perform detailed trade-off analysis in the context of radar sizing, modes of operation, frequency selection, waveforms, and signal processing Ö Develop loss and error budgets associated with the design MATLAB Simulations for Radar Systems Design teaches all of this and provides the M-files and hands-on simulation experience needed to design and analyze radar systems. Part I forms a comprehensive description of radar systems, their analysis, and the design process. The authors' unique approach involves a design case study introduced in Chapter 1 and followed throughout the text. As the treatment progresses, the complexity increases and the case study requirements are adjusted accordingly. Part II presents a series of chapters-some authored by other experts in the field-on specialized radar topics important to a full understanding of radar systems design and analysis. A comprehensive set of MATLAB programs and functions support both parts of the book and are available for download from the CRC Press Web site.
Developed from the author's graduate-level courses, the first edition of this book filled the need for a comprehensive, self-contained, and hands-on treatment of radar systems analysis and design. It quickly became a bestseller and was widely adopted by many professors. The second edition built on this successful format by rearranging and updating
An introduction to radar systems should ideally be self-contained and hands-on, a combination lacking in most radar texts. The first edition of Radar Systems Analysis and Design Using MATLAB® provided such an approach, and the second edition continues in the same vein. This edition has been updated, expanded, and reorganized to include advances in the field and to be more logical in sequence. Ideal for anyone encountering the topic for the first time or for professionals in need of on-the-job reference, this book features an abundance of MATLAB programs and code. Radar Systems Analysis and Design Using MATLAB®, Second Edition presents the fundamentals and principles of radar along with enough rigorous mathematical derivations to ensure that you gain a deep understanding. The author has extensively revised chapters on radar cross-section and polarization, matched filter and radar ambiguity function, and radar wave propagation. He also added information on topics such as PRN codes, multipath and refraction, clutter and MTI processing, and high range resolution. With all MATLAB functions updated to reflect version 7.0 and an expanded set of self-test problems, you will find this up-to-date text to be the most complete treatment of radar available, providing the hands-on tools that will enrich your learning.