Download Free Design Against Blast Book in PDF and EPUB Free Download. You can read online Design Against Blast and write the review.

Terrorist attacks and other destructive incidents caused by explosives have, in recent years, prompted considerable research and development into the protection of structures against blast loads. For this objective to be achieved, experiments have been performed and theoretical studies carried out to improve our assessments of the intensity as well as the space-time distribution of the resulting blast pressure on the one hand and the consequences of an explosion to the exposed environment on the other.This book aims to enhance awareness on and understanding of these topical issues through a collection of relevant, Transactions of the Wessex Institute of Technology articles written by experts in the field. The book starts with an overview of key physics-based algorithms for blast and fragment environment characterisation, structural response analyses and structural assessments with reference to a terrorist attack in an urban environment and the management of its inherent uncertainties.A subsequent group of articles is concerned with the accurate definition of blast pressure, which is an essential prerequisite to the reliable assessment of the consequences of an explosion. Other papers are concerned with alternative methods for the determination of blast pressure, based on experimental measurements or neural networks. A final group of articles reports investigations on predicting the response of specific structural entities and their contents.The book concludes with studies on the effectiveness of steel-reinforced polymer in improving the performance of reinforced concrete columns and the failure mechanisms of seamless steel pipes used in nuclear industry.
Unique single reference supports functional and cost-efficient designs of blast resistant buildings Now there's a single reference to which architects, designers, and engineers can turn for guidance on all the key elements of the design of blast resistant buildings that satisfy the new ASCE Standard for Blast Protection of Buildings as well as other ASCE, ACI, and AISC codes. The Handbook for Blast Resistant Design of Buildings features contributions from some of the most knowledgeable and experienced consultants and researchers in blast resistant design. This handbook is organized into four parts: Part 1, Design Considerations, sets forth basic principles, examining general considerations in the design process; risk analysis and reduction; criteria for acceptable performance; materials performance under the extraordinary blast environment; and performance verification for technologies and solution methodologies. Part 2, Blast Phenomena and Loading, describes the explosion environment, loading functions needed for blast response analysis, and fragmentation and associated methods for effects analysis. Part 3, System Analysis and Design, explains the analysis and design considerations for structural, building envelope, component space, site perimeter, and building system designs. Part 4, Blast Resistant Detailing, addresses the use of concrete, steel, and masonry in new designs as well as retrofitting existing structures. As the demand for blast resistant buildings continues to grow, readers can turn to the Handbook for Blast Resistant Design of Buildings, a unique single source of information, to support competent, functional, and cost-efficient designs.
This updated edition provides general guidelines for the structural design of blast-resistant petrochemical facilities. Information is provided for U.S. Occupational Safety and Health Administration (OSHA) requirements, design objectives, siting considerations, and load determination, and references cite sources of detailed information. Detailed coverage is provided for types of construction, dynamic material strengths, allowable response criteria, analysis methods, and design procedures. Typical details and ancillary considerations, such as doors and windows, are also included. A how-to discussion on the upgrade of existing buildings is provided for older facilities which may not meet current needs. Three example calculations are included to illustrate design procedures.
Standard ASCE/SEI 59-22 provides minimum requirements for planning, design, construction, and assessment of new and existing buildings subject to the effects of accidental or malicious explosions.
This guide is aimed at all engineers and architects involved in building design, focusing on the importance of constructing buildings which minimise damage to people and property in the event of an explosion.
Reflects developments in the field of blast engineering since the early 1990s. Combining coverage of the design standards, codes and materials with an appreciation of the needs and demands of the designer, this book provides the engineer with a comprehensive source of reference for the main elements of blast engineering design in modern practice.
In November 1999, GSA and the U.S. Department of State convened a symposium to discuss the apparently conflicting objectives of security from terrorist attack and the design of public buildings in an open society. The symposium sponsors rejected the notion of rigid, prescriptive design approaches. The symposium concluded with a challenge to the design and security professions to craft aesthetically appealing architectural solutions that achieve balanced, performance-based approaches to both openness and security. In response to a request from the Office of the Chief Architect of the Public Buildings Service, the National Research Council (NRC) assembled a panel of independent experts, the Committee to Review the Security Design Criteria of the Interagency Security Committee. This committee was tasked to evaluate the ISC Security Design Criteria to determine whether particular provisions might be too prescriptive to allow a design professional "reasonable flexibility" in achieving desired security and physical protection objectives.
This book brings together, in a concise format, the key elements of the loads produced from explosive sources, and how they interact with structures. Explosive sources include gas, high explosives, dust and nuclear materials.It presents quantitative information and design methods in a useable form without recourse to extensive mathematical ana
During the last two decades inverse problems in vibration have been studied extensively, and have formed a new research discipline in applied mechanics. These investigations have been accelerated through the rapid advancement of computer technology, while finite element and boundary element methods have stimulated the application of inverse problems in vibration. In the seismic-resistant design of building structures, the concept of 'performance-based design' has become very significant following such earthquakes as the Loma Prieta Earthquake (San Francisco, 1989), the Northridge Earthquake (Los Angeles, 1994) and the Hyogoken-Nanbu Earthquake (Kobe, 1995), and is now being incorporated into the design process of actual building structures. This book introduces a new dynamic structural design approach using inverse problem formulations to overcome several problems in the rationalization and systematization of structural design processes. A new direction for seismic-resistant design founded on the concept of performance based design is also proposed. Most of volume is based on the author's own work, and much of the contents has not been previously published. Simple models are includ