Download Free Deriving Drug Discovery Value From Large Scale Genetic Bioresources Book in PDF and EPUB Free Download. You can read online Deriving Drug Discovery Value From Large Scale Genetic Bioresources and write the review.

The process of discovering and developing a new drug or therapy is extremely costly and time consuming, and recently, it has been estimated that the creation of a new medicine costs on average more than $2 billion and takes 10 years to reach patients. The challenges associated with bringing new medicines to market have led many pharmaceutical companies to seek out innovative methods for streamlining their drug discovery research. One way to increase the odds of success for compounds in the drug development pipeline is to adopt genetically guided strategies for drug discovery, and recognizing the potential benefits of collecting genetic and phenotypic information across specific populations, pharmaceutical companies have started collaborating with healthcare systems and private companies that have curated genetic bioresources, or large databases of genomic information. Large-scale cohort studies offer an effective way to collect and store information that can be used to assess geneâ€"environment interactions, identify new potential drug targets, understand the role of certain genetic variants in the drug response, and further elucidate the underlying mechanisms of disease onset and progression. To examine how genetic bioresources could be used to improve drug discovery and target validation, the National Academies of Sciences, Engineering, and Medicine hosted a workshop in March 2016. Participants at the workshop explored the current landscape of genomics-enabled drug discovery activities in industry, academia, and government; examined enabling partnerships and business models; and considered gaps and best practices for collecting population data for the purpose of improving the drug discovery process. This publication summarizes the presentations and discussions from the workshop.
The process of discovering and developing a new drug or therapy is extremely costly and time consuming, and recently, it has been estimated that the creation of a new medicine costs on average more than $2 billion and takes 10 years to reach patients. The challenges associated with bringing new medicines to market have led many pharmaceutical companies to seek out innovative methods for streamlining their drug discovery research. One way to increase the odds of success for compounds in the drug development pipeline is to adopt genetically guided strategies for drug discovery, and recognizing the potential benefits of collecting genetic and phenotypic information across specific populations, pharmaceutical companies have started collaborating with healthcare systems and private companies that have curated genetic bioresources, or large databases of genomic information. Large-scale cohort studies offer an effective way to collect and store information that can be used to assess geneâ€"environment interactions, identify new potential drug targets, understand the role of certain genetic variants in the drug response, and further elucidate the underlying mechanisms of disease onset and progression. To examine how genetic bioresources could be used to improve drug discovery and target validation, the National Academies of Sciences, Engineering, and Medicine hosted a workshop in March 2016. Participants at the workshop explored the current landscape of genomics-enabled drug discovery activities in industry, academia, and government; examined enabling partnerships and business models; and considered gaps and best practices for collecting population data for the purpose of improving the drug discovery process. This publication summarizes the presentations and discussions from the workshop.
Those involved in the drug development process face challenges of efficiency and overall sustainability due in part to high research costs, lengthy development timelines, and late-stage drug failures. Novel clinical trial designs that enroll participants based on their genetics represent a potentially disruptive change that could improve patient outcomes, reduce costs associated with drug development, and further realize the goals of precision medicine. On March 8, 2017, the Forum on Drug Discovery, Development, and Translation and the Roundtable on Genomics and Precision Health of the National Academies of Sciences, Engineering, and Medicine hosted the workshop Enabling Precision Medicine: The Role of Genetics in Clinical Drug Development. Participants examined successes, challenges, and possible best practices for effectively using genetic information in the design and implementation of clinical trials to support the development of precision medicines, including exploring the potential advantages and disadvantages of such trials across a variety of disease areas. This publication summarizes the presentations and discussions from the workshop.
Drug development can be time-consuming and expensive. Recent estimates suggest that, on average, it takes 10 years and at least $1 billion to bring a drug to market. Given the time and expense of developing drugs de novo, pharmaceutical companies have become increasingly interested in finding new uses for existing drugs - a process referred to as drug repurposing or repositioning. Historically, drug repurposing has been largely an unintentional, serendipitous process that took place when a drug was found to have an offtarget effect or a previously unrecognized on-target effect that could be used for identifying a new indication. Perhaps the most recognizable example of such a successful repositioning effort is sildenafil. Originally developed as an anti-hypertensive, sildenafil, marketed as Viagra and under other trade names, has been repurposed for the treatment of erectile dysfunction and pulmonary arterial hypertension. Viagra generated more than $2 billion worldwide in 2012 and has recently been studied for the treatment of heart failure. Given the widespread interest in drug repurposing, the Roundtable on Translating Genomic-Based Research for Health of the Institute of Medicine hosted a workshop on June 24, 2013, in Washington, DC, to assess the current landscape of drug repurposing activities in industry, academia, and government. Stakeholders, including government officials, pharmaceutical company representatives, academic researchers, regulators, funders, and patients, were invited to present their perspectives and to participate in workshop discussions. Drug Repurposing and Repositioning is the summary of that workshop. This report examines enabling tools and technology for drug repurposing; evaluates the business models and economic incentives for pursuing a repurposing approach; and discusses how genomic and genetic research could be positioned to better enable a drug repurposing paradigm.
This report is structured in five parts: national framework for traditional and complementary medicine (T&CM); product regulation; practices and practitioners; the challenges faced by countries; and finally the country profiles. Apart from the section on practices and practitioners the report is consistent with the format of the report of the first global survey in order to provide a useful comparison. The section on practices and practitioners which covers providers education and health insurance is a new section incorporated to reflect the emerging trends in T&CM and to gather new information regarding these topics at a national level. All new information received has been incorporated into individual country profiles and data graphs. The report captures the three phases of progress made by Member States; that is before and after the first WHO Traditional Medicine Strategy (1999?2005) from the first global survey to the second global survey (2005?2012) and from the second survey to the most recent timeline (2012?2018).
This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and development of integrated forest biorefineries (IFBR) as the path forward for the pulp, paper and other fiber-processing industries. This is the only book to cover this area of high economic, social, and environmental importance. It is aimed at industrialists and academics from diverse science and engineering backgrounds including chemical and biotechnology companies, governmental and professional bodies, and scholarly societies. The Editor and contributors are internationally recognized scientists and many are leaders in their respective fields. The book starts with an introductory overview of the current state of biorefining and a justification for future developments. The next four chapters deal with social, economic and environmental issues related to regulations, biomass production and supply, process modelling, and life cycle analysis. Subsequent chapters focus on the extraction of biochemicals from biomass and their potential utilization to add value to the IFBR prior to pulping. The book then presents, compares and evaluates two types of forest biorefineries based on kraft and organosolv pulping. Finally, the book assess the potential of waste biomass and streams, such paper mill sludge and black liquor, to serve as feedstock for biofuel production and value-added biomaterials through both the biochemical and thermochemical routes of biomass bioprocessing. The economics of the described IFBR processes and products, and their environmental impact, is a major focus in most of the chapters. Practical examples are presented where relevant and applicable.
With interdisciplinary chapters written by lawyers, sociologists, doctors and biobank practitioners, Global Genes, Local Concerns identifies and discusses the most pressing issues in contemporary biobanking. Addressing pressing questions such as how do national biobanks best contribute to translational research and how could academic and industrial exploitation, ownership and IPR issues be addressed and facilitated, this book contributes to the continued development of international biobanking by highlighting and analysing the complexities in this important area of research.
This work is a comprehensive information on the indigenous bioresources of North Eastern India with the scope of bioprospecting for discovery and commercialization of new sources and products and long-term ecological balance. The exploration, conservation and sustainable utilization of bioresources of world’s Megabiodiversity Hotspots are undeniable. North Eastern India is a recognised biodiversity hot spot where the evolutionary forces are at its optimum, making this region as centre of origin for many species. Although little bit exploratory studies have been conducted in this part of the globe but a scientific exploitation of the bioresources is almost lacking. Unscientific exploitation and overexploitation without proper knowledge of the bioresources may lead to imbalanced ecosystem of this mega diversity region. At the same time, very less exploration and exploitation will hamper biodiversity based development. Today, unscientific dramatic changes are underway in this region. Human activities are changing, degrading and destroying the bioresources in an unplanned manner. Scientific bioprospecting of the bioresources will boost the economy while ensuring conservation. This book offers comprehensive information about various levels of bioprospecting of the gene pool of this Indo-Burma Mega Biodiversity Hot Spot, the North East India, which is endowed with huge biodiversity potential for exploration and exploitation for the benefit of humankind. Also, this book highlights the less and merely explored part of the indigenous biodiversity of North East India with explanation towards their better sustainable exploitation for benefit of the people, economy and environment. The novelty of the book lies in expert coverage of the bioresources of this mega-diverse region including plants, microbes, insects etc. with provisions for their sustainable scientific utilization. This book portrays North East India as a melting pot of bioresources which are little explored and also those resources which are still to be explored. The book mainly highlights the bioprospecting approaches for North East Indian bioresources, and thus, it make itself a unique one in filling the knowledge gap that is there regarding the bioprospecting of the biodiversity of this special region on the earth. The book concludes by the ecotourism potential of this region. The target audiences for this book include biodiversity economists who are working on technology and bioresource management issues, and especially on biotechnology and biodiversity, development economists addressing the issues of bioresources in developing countries. These people may be in academia, in government, in non-governmental organizations and in private companies. The other target audiences group is policy scholars in government/public sectors who are interested in issues of biotechnology, IPRs, and biodiversity. In addition, scholars/experts in both development studies and resource management studies form another group of target audiences. Also, the book will be useful for the interaction between developed and developing nations regarding the issues of biodiversity and bioprospecting, as North Eastern India is the hub of Biodiversity.
Dramatic developments in understanding the fundamental underpinnings of life have provided exciting opportunities to make marine bioproducts an important part of the U.S. economy. Several marine based pharmaceuticals are under active commercial development, ecosystem health is high on the public's list of concerns, and aquaculture is providing an ever greater proportion of the seafood on our tables. Nevertheless, marine biotechnology has not yet caught the public's, or investor's, attention. Two workshops, held in October 1999 and November 2001 at the National Academies, were successful in highlighting new developments and opportunities in environmental and biomedical applications of marine biotechnology, and also in identifying factors that are impeding commercial exploitation of these products. This report includes a synthesis of the 2001 sessions addressing drug discovery and development, applications of genomics and proteomics to marine biotechnology, biomaterials and bioengineering, and public policy and essays contributed by the workshop speakers.
Interest in the commercial value of genetic and biochemical resources is burgeoning. Virtually no precedent exists for policies and legislation to govern and regulate what amounts to a brand new industry. This report provides guidelines for establishing policies for biodiversity prospecting.