Download Free Dependability Basic Concepts And Terminology Book in PDF and EPUB Free Download. You can read online Dependability Basic Concepts And Terminology and write the review.

A one-volume guide to the most essential techniques for designing and building dependable distributed systems Instead of covering a broad range of research works for each dependability strategy, this useful reference focuses on only a selected few (usually the most seminal works, the most practical approaches, or the first publication of each approach), explaining each in depth, usually with a comprehensive set of examples. Each technique is dissected thoroughly enough so that readers who are not familiar with dependable distributed computing can actually grasp the technique after studying the book. Building Dependable Distributed Systems consists of eight chapters. The first introduces the basic concepts and terminology of dependable distributed computing, and also provides an overview of the primary means of achieving dependability. Checkpointing and logging mechanisms, which are the most commonly used means of achieving limited degree of fault tolerance, are described in the second chapter. Works on recovery-oriented computing, focusing on the practical techniques that reduce the fault detection and recovery times for Internet-based applications, are covered in chapter three. Chapter four outlines the replication techniques for data and service fault tolerance. This chapter also pays particular attention to optimistic replication and the CAP theorem. Chapter five explains a few seminal works on group communication systems. Chapter six introduces the distributed consensus problem and covers a number of Paxos family algorithms in depth. The Byzantine generals problem and its latest solutions, including the seminal Practical Byzantine Fault Tolerance (PBFT) algorithm and a number of its derivatives, are introduced in chapter seven. The final chapter details the latest research results surrounding application-aware Byzantine fault tolerance, which represents an important step forward in the practical use of Byzantine fault tolerance techniques.
Offers a holistic approach to guiding product design, manufacturing, and after-sales support as the manufacturing industry transitions from a product-oriented model to service-oriented paradigm This book provides fundamental knowledge and best industry practices in reliability modelling, maintenance optimization, and service parts logistics planning. It aims to develop an integrated product-service system (IPSS) synthesizing design for reliability, performance-based maintenance, and spare parts inventory. It also presents a lifecycle reliability-inventory optimization framework where reliability, redundancy, maintenance, and service parts are jointly coordinated. Additionally, the book aims to report the latest advances in reliability growth planning, maintenance contracting and spares inventory logistics under non-stationary demand condition. Reliability Engineering and Service provides in-depth chapter coverage of topics such as: Reliability Concepts and Models; Mean and Variance of Reliability Estimates; Design for Reliability; Reliability Growth Planning; Accelerated Life Testing and Its Economics; Renewal Theory and Superimposed Renewals; Maintenance and Performance-Based Logistics; Warranty Service Models; Basic Spare Parts Inventory Models; Repairable Inventory Systems; Integrated Product-Service Systems (IPPS), and Resilience Modeling and Planning Guides engineers to design reliable products at a low cost Assists service engineers in providing superior after-sales support Enables managers to respond to the changing market and customer needs Uses end-of-chapter case studies to illustrate industry best practice Lifecycle approach to reliability, maintenance and spares provisioning Reliability Engineering and Service is an important book for graduate engineering students, researchers, and industry-based reliability practitioners and consultants.
Delta-4 is a 5-nation, 13-partner project that has been investigating the achievement of dependability in open distributed systems, including real-time systems. This book describes the design and validation of the distributed fault-tolerant architecture developed within this project. The key features of the Delta-4 architecture are: (a) a distributed object-oriented application support environment; (b) built-in support for user-transparent fault tolerance; (c) use of multicast or group communication protocols; and (d) use of standard off the-shelf processors and standard local area network technology with minimum specialized hardware. The book is organized as follows: The first 3 chapters give an overview of the architecture's objectives and of the architecture itself, and compare the proposed solutions with other approaches. Chapters 4 to 12 give a more detailed insight into the Delta-4 architectural concepts. Chapters 4 and 5 are devoted to providing a firm set of general concepts and terminology regarding dependable and real-time computing. Chapter 6 is centred on fault-tolerance techniques based on distribution. The description of the architecture itself commences with a description of the Delta-4 application support environment (Deltase) in chapter 7. Two variants of the architecture - the Delta-4 Open System Architecture (OSA) and the Delta-4 Extra Performance Architecture (XPA) - are described respectively in chapters 8 and 9. Both variants of the architecture have a common underlying basis for dependable multicasting, i. e.
This book presents the proceedings of the First European Dependable Computing Conference (EDCC-1), held in Berlin, Germany, in October 1994. EDCC is the merger of two former European events on dependable computing. The volume comprises 34 refereed full papers selected from 106 submissions. The contributions address all current aspects of dependable computing and reflect the state of the art in dependable systems research and advanced applications; among the topics covered are hardware and software reliability, safety-critical and secure systems, fault-tolerance and detection, verification and validation, formal methods, hardware and software testing, and parallel and distributed systems.
Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.
This book gives a practical guide for designers and users in Information and Communication Technology context. In particular, in the first Section, the definition of the fundamental terms according to the international standards are given. Then, some theoretical concepts and reliability models are presented in Chapters 2 and 3: the aim is to evaluate performance for components and systems and reliability growth. Chapter 4, by introducing the laboratory tests, puts in evidence the reliability concept from the experimental point of view. In ICT context, the failure rate for a given system can be evaluate by means of specific reliability prediction handbooks; this aspect is considered in Chapter 5, with practical applications. In Chapters 6, 7 and 8, the more complex aspects regarding both the Maintainability, Availability and Dependability are taken into account; in particular, some fundamental techniques such as FMECA (Failure Mode, Effects, and Criticality Analysis) and FTA (Fault Tree Analysis) are presented with examples for reparable systems.
This tutorial book gives an overview of the current state of the art in measuring the different aspects of dependability of systems: reliability, security and performance.
The book focuses on system dependability modeling and calculation, considering the impact of s-dependency and uncertainty. The best suited approaches for practical system dependability modeling and calculation, (1) the minimal cut approach, (2) the Markov process approach, and (3) the Markov minimal cut approach as a combination of (1) and (2) are described in detail and applied to several examples. The stringently used Boolean logic during the whole development process of the approaches is the key for the combination of the approaches on a common basis. For large and complex systems, efficient approximation approaches, e.g. the probable Markov path approach, have been developed, which can take into account s-dependencies be-tween components of complex system structures. A comprehensive analysis of aleatory uncertainty (due to randomness) and epistemic uncertainty (due to lack of knowledge), and their combination, developed on the basis of basic reliability indices and evaluated with the Monte Carlo simulation method, has been carried out. The uncertainty impact on system dependability is investigated and discussed using several examples with different levels of difficulty. The applications cover a wide variety of large and complex (real-world) systems. Actual state-of-the-art definitions of terms of the IEC 60050-192:2015 standard, as well as the dependability indices, are used uniformly in all six chapters of the book.