Download Free Dendritic Cells Book in PDF and EPUB Free Download. You can read online Dendritic Cells and write the review.

Dendritic Cells, Second Edition is the new edition of the extremely successful book published in 1998. With the volume of literature on dendritic cells doubling every year, it is almost impossible to keep up. This book provides the most up-to-date synthesis of the literature, written by the very best authors. It is essential reading for any scientist working in immunology, cell biology, infectious diseases, cancer, transplantation, genetic engineering, or the pharmaceutical/biotechnology industry.An entirely new section on DC biology is included in this edition. Also new to this edition are chapters on: - Imaging - Interaction of dendritic cells with viruses - Dendritic cells and dendrikines, chemokines and the endothelium - Molecules expressed in dendritic cells - Role of dendritic cells in wound healing and atherosclerosis - Delivery of apoptotic bodies - Genetic engineering of dendritic cells - Imaging - Practical aspects of clinical protocol development
The second edition of Avian Immunology provides an up-to-date overview of the current knowledge of avian immunology. From the ontogeny of the avian immune system to practical application in vaccinology, the book encompasses all aspects of innate and adaptive immunity in chickens. In addition, chapters are devoted to the immunology of other commercially important species such as turkeys and ducks, and to ecoimmunology summarizing the knowledge of immune responses in free-living birds often in relation to reproductive success. The book contains a detailed description of the avian innate immune system, encompassing the mucosal, enteric, respiratory and reproductive systems. The diseases and disorders it covers include immunodepressive diseases and immune evasion, autoimmune diseases, and tumors of the immune system. Practical aspects of vaccination are examined as well. Extensive appendices summarize resources for scientists including cell lines, inbred chicken lines, cytokines, chemokines, and monoclonal antibodies. The world-wide importance of poultry protein for the human diet, as well as the threat of avian influenza pandemics like H5N1 and heavy reliance on vaccination to protect commercial flocks makes this book a vital resource. This book provides crucial information not only for poultry health professionals and avian biologists, but also for comparative and veterinary immunologists, graduate students and veterinary students with an interest in avian immunology. - With contributions from 33 of the foremost international experts in the field, this book provides the most up-to-date review of avian immunology so far - Contains a detailed description of the avian innate immune system reviewing constitutive barriers, chemical and cellular responses; it includes a comprehensive review of avian Toll-like receptors - Contains a wide-ranging review of the "ecoimmunology" of free-living avian species, as applied to studies of population dynamics, and reviews methods and resources available for carrying out such research
Epidermal Langerhans Cells focuses on epidermal Langerhans cells (LCs) and the important role they play in the induction of contact hypersensitivity and graft rejection. This in-depth work discusses how these antigen-presenting cells are modulated by various physicochemical agents (such as UV light) and how they can be infected by the AIDS virus. It also reveals that cytokines mediate their development into potent T cell-stimulatory dendritic cells. This comprehensive review covers important experimental details and methods, and fascinating information on LCs. It also provides an overview of the immune system as it relates to the skin in health and disease. This up-to-date publication is an indispensable resource for all investigative and clinical dermatologists, as well as immunologists interested in antigen-presenting cells.
The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.
Most of the diseases of modern mankind involve either acute or chronic inflammation. Measuring Immunity integrates the current information available on biomarkers and surrogate assays into a single handbook. It highlights the principles behind various applications, gives a brief summary on how they are conducted and provides detailed and critical analyses of murine models of immunity, clinical trials, and tests to predict utility and benefit. Measuring Immunity is indispensable for scientists and clinicians interested in the clinical applications of modern immunobiology.* Defines which assays of immune function are helpful in the assessment of clinical disorders involving inflammation and immunity* Assesses the dynamics of cellular and soluble factors in the peripheral blood using modern techniques * Includes basic science foundations as well as the approaches currently applied
“Infogest” (Improving Health Properties of Food by Sharing our Knowledge on the Digestive Process) is an EU COST action/network in the domain of Food and Agriculture that will last for 4 years from April 4, 2011. Infogest aims at building an open international network of institutes undertaking multidisciplinary basic research on food digestion gathering scientists from different origins (food scientists, gut physiologists, nutritionists...). The network gathers 70 partners from academia, corresponding to a total of 29 countries. The three main scientific goals are: Identify the beneficial food components released in the gut during digestion; Support the effect of beneficial food components on human health; Promote harmonization of currently used digestion models Infogest meetings highlighted the need for a publication that would provide researchers with an insight into the advantages and disadvantages associated with the use of respective in vitro and ex vivo assays to evaluate the effects of foods and food bioactives on health. Such assays are particularly important in situations where a large number of foods/bioactives need to be screened rapidly and in a cost effective manner in order to ultimately identify lead foods/bioactives that can be the subject of in vivo assays. The book is an asset to researchers wishing to study the health benefits of their foods and food bioactives of interest and highlights which in vitro/ex vivo assays are of greatest relevance to their goals, what sort of outputs/data can be generated and, as noted above, highlight the strengths and weaknesses of the various assays. It is also an important resource for undergraduate students in the ‘food and health’ arena.
The mononuclear phagocyte system (MPS) comprises dendritic cells (DCs), monocytes and macrophages (MØs) that together play crucial roles in tissue immunity and homeostasis, but also contribute to a broad spectrum of pathologies. They are thus attractive therapeutic targets for immune therapy. However, the distinction between DCs, monocytes and MØ subpopulations has been a matter of controversy and the current nomenclature has been a confounding factor. DCs are remarkably heterogeneous and consist of multiple subsets traditionally defined by their expression of various surface markers. While markers are important to define various populations of the MPS, they do not specifically define the intrinsic nature of a cell population and do not always segregate a bona fide cell type of relative homogeneity. Markers are redundant, or simply define distinct activation states within one subset rather than independent subpopulations. One example are the steady-state CD11b+ DCs which are often not distinguished from monocytes, monocyte-derived cells, and macrophages due to their overlapping phenotype. Lastly, monocyte fate during inflammation results in cells bearing the phenotypic and functional features of both DCs and MØs significantly adding to the confusion. In fact, depending on the context of the study and the focus of the laboratory, a monocyte-derived cell will be either be called "monocyte-derived DCs" or "macrophages". Because the names we give to cells are often associated with a functional connotation, this is much more than simple semantics. The "name" we give to a population fundamentally changes the perception of its biology and can impact on research design and interpretation. Recent evidence in the ontogeny and transcriptional regulation of DCs and MØs, combined with the identification of DC- and MØ-specific markers has dramatically changed our understanding of their interrelationship in the steady state and inflammation. In steady state, DCs are constantly replaced by circulating blood precursors that arise from committed progenitors in the bone marrow. Similarly, some MØ populations are also constantly replaced by circulating blood monocytes. However, others tissue MØs are derived from embryonic precursors, are seeded before birth and maintain themselves in adults by self-renewal. In inflammation, such differentiation pathways are fundamentally changed and unique monocyte-derived inflammatory cells are generated. Current DC, monocyte and MØ nomenclature does not take into account these new developments and as a consequence is quite confusing. We believe that the field is in need of a fresh view on this topic as well as an upfront debate on DC and MØ nomenclature. Our aim is to bring expert junior and senior scientists to revisit this topic in light of these recent developments. This Research Topic will cover all aspects of DC, monocyte and MØ biology including development, transcriptional regulation, functional specializations, in lymphoid and non-lymphoid tissues, and in both human and mouse models. Given the central position of DCs, monocytes and MØs in tissue homeostasis, immunity and disease, this topic should be of interest to a large spectrum of the biomedical community.
These Proceedings contain the contributions of the partIcIpants of the Third International Symposium on Dendritic Cells that was held in Annecy, France, from June 19 to June 24, 1994. This symposium represented a follow-up of the first and second international symposia that were held in Japan in 1990 and in the Netherlands in 1992. Dendritic cells are antigen-presenting cells, and are found in all tissues and organs of the body. They can be classified into: (1) interstitial dendritic cells of the heart, kidney, gut, and lung;(2) Langerhans cells in the skin and mucous membranes; (3) interdigitating dendritic cells in the thymic medulla and secondary lymphoid tissue; and (4) blood dendritic cells and lymph dendritic cells (veiled cells). Although dendritic cells in each of these compartments are all CD45+ leukocytes that arise from the bone marrow, they may exhibit differences that relate to maturation state and microenvironment. Dendritic cells are specialized antigen-presenting cells for T lymphocytes: they process and present antigens efficiently in situ, and stimulate responses from naive and memory T cells in the paracortical area of secondary lymphoid organs. Recent evidence also demonstrates their role in induction of tolerance. By contrast, the primary and secondary B-cell follicles contain follicular dendritic cells that trap and retain intact antigen as immune complexes for long periods of time. The origin of follicular dendritic cells is not clear, but most investigators believe that these cells are not leukocytes.
This reference is a volume in the Handbook of Physiology, co-published with The American Physiological Society. Growth in knowledge about the microcirculation has been explosive with the field becoming fragmented into numerous subdisciplines and subspecialties. This volume pulls all of the critical information into one volume. - Meticulously edited and reviewed. Benefit: Provides investigators a unique tool to explore the significance of their findings in the context of other aspects of the microcirculation. In this way, the updated edition has a direct role in helping to develop new pathways of research and scholarship - Highlights the explosive growth in knowledge about the microcirculation including the biology of nitric oxide synthase (NOS), endothelial cell signaling, angiogenesis, cell adhesion molecules, lymphocyte trafficking, ion channels and receptors, and propagated vasomotor responses. Benefit: Microcirculatory biology has become fragmented into numerous sub-disciplines and subspecialties, and these reference reintegrates the information in one volume