Download Free Dendrimer Based Drug Delivery Systems Book in PDF and EPUB Free Download. You can read online Dendrimer Based Drug Delivery Systems and write the review.

With chapters from highly skilled, experienced, and renowned scientists and researchers from around the globe, Dendrimers for Drug Delivery provides an abundance of information on dendrimers and their applications in the field of drug delivery. The volume begins with an introduction to dendrimers, summarizing dendrimer applications and the striking features of dendrimers. It goes on to present the details of usual properties, structure, classification, and methods of synthesis, with relevant examples. The toxicity of dendrimers is also discussed. The chapter authors provide an exhaustive amount of information about dendrimers and their biomedical applications, including biocompatibility and toxicity aspects, a very useful feature. This informative volume will be valuable resource that will help readers to create products derived from dendrimers and navigate through the regulatory, manufacturing, and quality control hurdles. It will be an important resource for researchers, scientists, upper-level students, and industry professionals.
Dendrimer-Based Nanotherapeutics delivers a comprehensive resource on the use of dendrimer-based drug delivery. Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. This book compiles the contribution of dendrimers in the field of nanotechnology to aid researchers in exploring dendrimers in the field of drug delivery and related applications. This book covers the history of the area to the most recent research. The starting chapter covers detailed information about basic properties about dendrimers i.e. properties, nomenclature, synthesis methods, types, characterization of dendrimers, safety and toxicity issues of dendrimers. Further chapters discuss the most recent advancements in the field of dendrimer i.e. dendrimer-drug conjugates, PEGylated dendrimer, dendrimer surface engineering, dendrimer hybrids, dendrimers as solubility enhancement, in targeting and delivery of drugs, as photodynamic therapy, in tissue engineering, as imaging contrast agents, as antimicrobial agents, advances in targeted dendrimers for cancer therapy and future considerations of dendrimers. Dendrimer-Based Nanotherapeutics will help the readers to understand the most recent progress in the field of dendrimer-based research, suitable for pharmaceutical scientists, advanced students, and those working in related healthcare fields. - Discusses various routes such as oral, pulmonary, transdermal, delivery and local administration of dendrimer delivery of bioactive - Explores a wide range of applications of dendrimer-based drug delivery using the latest advancements in nanomedicine - Provides the most recent research on dendrimers as well as context and background, providing a useful resource for all levels of researcher
Pharmaceutical Applications of Dendrimers explores the applications of dendrimers in the solubilization of hydrophobic active ingredients, drug delivery, gene delivery, imaging, diagnosis and photodynamic therapy. The book discusses the diagnostic applications of dendrimers, including their use as MRI contrast agents and in the imaging of diseased areas. In addition, the anti-inflammatory, antimicrobial and antiviral properties of PPI and PAMAM are also covered, along with a discussion on photosensitizers, such as rose Bengal and protoporphyrin IX that have been delivered using PAMAM and PPI dendrimers for the treatment of cancer. This book is an important research reference for those who want to learn more about the development of dendrimer-based solutions for drug delivery.
Dendrimers, hyperbranched macromolecules, emerged just few decades ago but show promising potential as drug delivery nanocarriers, theranostic agents and gene vectors; in the pharmaceutical research and innovation area as well as in other healthcare applications. Although tremendous advancements have been made in dendrimer chemistry and their applications since their emergence, the synthesis, development and design of pure and safe dendrimer-based products have been a major challenge in this area. This book, edited by well-known researchers in the area of nanomaterials and drug-based drug delivery applications, exhaustively covers the nanotechnological aspects, concepts, properties, characterisation, application, biofate and regulatory aspects of dendrimers. It includes sixteen vivid chapters by renowned formulators, researchers and academicians from all over the world, highlighting their specialised areas of interest in the fields of chemistry, biology, pharmacy and nanomedicine. Features: • Highlights dendrimers’ advancements in nanomedicine in the development of safe healthcare and biotechnological products • Covers physicochemical aspects, biofate, drug delivery aspects and gene therapy using dendrimers • Covers biomedical application of dendrimers in the field of biological sciences • Gives examples of dendrimer–guest interaction chemistry Dendrimers in Nanomedicine: Concept, Theory and Regulatory Perspectives provides the comprehensive overview of the latest research efforts in designing, optimising, development and scale-up of dendrimer-mediated delivery systems. It analyses the key challenges of synthesis, design, molecular modelling, fundamental concepts, drug delivery aspects, analytical tools and biological fate as well as regulatory consideration to the practical use of dendrimer application. Dr. Neelesh Kumar Mehra Assistant Professor of Pharmaceutics in the Department of Pharmaceutics at the National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, India. He has authored more than sixty peer-reviewed publications in highly reputed international journals, as well as book chapters and contributions on two patents. Dr. Mehra has 11 years of rich research and teaching experience in the formulation and development of complex, innovative biopharmaceutical products including micro- and nanotechnologies for regulated markets. Dr. Keerti Jain Assistant Professor of Pharmaceutics in the Department of Pharmaceutics, NIPER, Raebareli, India. For more than 10 years, she has been actively engaged in formulation and development of nanomedicines. Dr. Jain has supervised masters and doctoral pharmaceutics students in their research works which have been published in high quality, good impact factor journals. She has also authored more than 60 international manuscripts in peer reviewed high impact journals. In 2019, she was awarded the prestigious ICMR-Amir Shakuntala Award.
This book will provide comprehensive coverage of dendrimer applications and clear indications for future research. It will appeal to chemists, biologists and materials scientists, working in both academia and industry.
The book provides a single volume covering detailed descriptions about various delivery systems, their principles and how these are put in use for the treatment of multiple diseases. It is divided into four sections where the first section deals with the introduction and importance of novel drug delivery system. The second section deals with the most advanced drug delivery systems like microbubbles, dendrimers, lipid-based nanoparticles, nanofibers, microemulsions etc., describing the major principles and techniques of the preparations of the drug delivery systems. The third section elaborates on the treatments of diverse diseases like cancer, topical diseases, tuberculosis etc. The fourth and final section provides a brief informative description about the regulatory aspects of novel drug delivery system that is followed in various countries.
With the start of 2020, the wrath of pandemic challenged the scientific community to develop more advanced drug delivery approaches for biomedical applications, endowing conventional drugs with additional therapeutic benefits and minimum side effects. Although significant advancements have been done in the field of drug delivery, there is a need to focus towards strategizing novel and improved drug delivery systems that should be convenient and cost-effective to the patients, and simultaneously they should also provide financial benefits to pharmaceutical companies. Controlled drug delivery technology offers ample opportunities and scope for improvising the therapeutic efficacy of drugs via optimizing the drug release rate and time. For this endeavour, smart nanomaterials have served as remarkable candidates for biomedical applications, owing to their ground-breaking properties and design. The development of such nanomaterials requires a broad knowledge related to their physio-chemical properties, molecular structure, mechanisms by which the nanomaterials interact with the cells, and methods by which drugs are released at the site of action. This knowledge must also be allied with the knowledge of signaling crosstalk mechanisms that are modulated by the nanomaterial-drugs composite. It can be anticipated that these emerging drug delivery technologies can facilitate the world to successfully encounter such pandemic outbursts in the future in a cost-effective and time-effective manner. The chapters in this book deal with the advanced technologies and approaches that can benefit advanced students, researchers, and industry experts in developing smart and intelligent nanomaterials for future biomedical applications, and development, manufacturing, and commercialization for controlled and targeted drug delivery.
Nanoparticles are attractive for many biomedical applications such as imaging, therapeutics and diagnostics. This new book looks at different soft nanoparticles and their current and potential uses in medicine and health including magnetoliposomes, micro/nanogels, polymeric micelles, DNA particles, dendrimers and bicelles. Each chapter provides a description of the synthesis of the particles and focus on the techniques used to characterize the size, shape, surface charge, internal structure, and surface microstructure of the nanoparticles together with modeling and simulation methods. By giving a strong physical-chemical approach to the topic, readers will gain a good background into the subject and an overview of recent developments. The multidisciplinary point of view makes the book suitable for postgraduate students and researchers in physics, chemistry, and biology interested in soft matter and its uses.
This book summarizes the latest advances in nanomaterials and techniques in the field of tumor-targeted diagnosis and therapy. It provides valuable information for beginners and senior researchers, and stimulates new research directions by offering novel and provocative insights into the properties and technical principles of nanomaterials. The book systemically discusses the challenges in tumor treatment, current tumor-targeted strategies, drug-release strategies, diagnosis and therapeutic patterns, and also explores newly developed multifunctional nanomaterials and related systems.
Here, front-line researchers in the booming field of nanobiotechnology describe the most promising approaches for bioinspired drug delivery, encompassing small molecule delivery, delivery of therapeutic proteins and gene delivery. The carriers surveyed include polymeric, proteinaceous and lipid systems on the nanoscale, with a focus on their adaptability for different cargoes and target tissues. Thanks to the broad coverage of carriers as well as cargoes discussed, every researcher in the field will find valuable information here.