Download Free Demonstration Of Polyolefin Fiber Reinforced Concrete In A Bridge Deck Replacement Book in PDF and EPUB Free Download. You can read online Demonstration Of Polyolefin Fiber Reinforced Concrete In A Bridge Deck Replacement and write the review.

This final report presents the construction and performance evaluation of a new full depth pavement, constructed with a new type non-metallic fiber reinforced concrete (NMFRC). The mixture proportions used, the quality control tests conducted for the evaluation of the fresh and hardened concrete properties, and the procedure used for mixing, transporting, placing, consolidating, finishing, tining and curing of the concrete are described. Periodic inspection of the full depth pavement was done and this report includes the results of these inspections. The feasibility of using this NMFRC in the construction of highway structures has been discussed. The new NMFRC with enhanced fatigue, impact resistance, modulus of rupture, ductility and toughness properties is suitable for the construction of full depth pavements. However, a life-cycle cost analysis shows that NMFRC is not a favorable choice, because of its high initial cost.
This report documents the results from an investigation of a new polymer fiber and unique delivery system for charging fibers into concrete mixtures. The straight Polyolefin fibers are available in two sizes: (1) 0.63 mm in diameter and 50 mm long, and (2) 0.38 mm in diameter and 25 mm long. Each of the two sizes of fibers is packaged in bundles approximately 50 mm in diameter. Each. bundle is encased with paper tape bound with a water-soluble glue. The fibers are charged into the concrete mixture in mass. Approximately 3 to 10 min of mixing time is necessary to uniformly distribute the fibers throughout the concrete mixture, depending upon the fiber content, consistency of the concrete mixture, and the type of mixer being used. Fresh and hardened properties were evaluated in mixtures containing up to 15 kg/cu m. The results indicate that concrete mixtures with the Polyolefin fibers can be produced having adequate workability and finishability if proportioned properly. Addition of the Polyolefin fibers does not significantly influence the compressive nor first-crack flexural strength, freezing-and-thawing resistance, drying shrinkage, nor the chloride permeability of concrete mixtures. However, the presence of the Polyolefin fibers does influence the post-crack behavior of concrete mixtures. Impact resistance and flexural toughness are improved as the fiber loading increases. A 6,100-m whitetopping demonstration project was constructed on a heavily traveled interstate in Mississippi. The whitetopping was 100 mm thick. Details of the specifications, construction, and early-time performance are given.
This reviews the progress made worldwide in the use of fibre reinforced polymers as structural components in bridges until the end of the year 2000. Due to their advantageous material properties such as high specific strength, a large tolerance for frost and de-icing salts and, furthermore, short installation times with minimum traffic interference, fibre reinforced polymers have matured to become valuable alternative building materials for bridge structures. Today, fibre reinforced polymers are manufactured industrially to semi-finished products and complete structural components, which can be easily and quickly installed or erected on site.