Download Free Demonstration Of A Diesel Fuel Borne Catalyst System And Low Nox Control Technology For Reducing Particulate And Nox Emissions Book in PDF and EPUB Free Download. You can read online Demonstration Of A Diesel Fuel Borne Catalyst System And Low Nox Control Technology For Reducing Particulate And Nox Emissions and write the review.

Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.
The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO --> NO2, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO2 and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO2 from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO2 was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.
Until recently, the complexity of the Diesel Particulate Filter (DPF) system has hindered its commercial success. Stringent regulations of diesel emissions has lead to advancements in this technology, therefore mainstreaming the use of DPFs in light- and heavy-duty diesel filtration applications. This book covers the latest and most important research in DPF systems, focusing mainly on the advancements of the years 2002-2006. Editor Timothy V. Johnson selected the top 29 SAE papers covering the most significant research in this technology.
Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (
Vehicle exhaust emissions, particularly from diesel cars, are considered to be a significant problem for the environment and human health. Lean NOx Trap (LNT) or NOx Storage/Reduction (NSR) technology is one of the current techniques used in the abatement of NOx from lean exhausts. Researchers are constantly searching for new inexpensive catalysts with high efficiency at low temperatures and negligible fuel penalties, to meet the challenges of this field. This book will be the first to comprehensively present the current research on this important area. Covering the technology used, from its development in the early 1990s up to the current state-of-the-art technologies and new legislation. Beginning with the fundamental aspects of the process, the discussion will cover the real application standard through to the detailed modelling of full scale catalysts. Scientists, academic and industrial researchers, engineers working in the automotive sector and technicians working on emission control will find this book an invaluable resource.