Download Free Demand Side Flexibility In Smart Grid Book in PDF and EPUB Free Download. You can read online Demand Side Flexibility In Smart Grid and write the review.

This book highlights recent advances in the identification, prediction and exploitation of demand side (DS) flexibility and investigates new methods of predicting DS flexibility at various different power system (PS) levels. Renewable energy sources (RES) are characterized by volatile, partially unpredictable and mostly non-dispatchable generation. The main challenge in terms of integrating RES into power systems is their intermittency, which negatively affects the power balance. Addressing this challenge requires an increase in the available PS flexibility, which in turn requires accurate estimation of the available flexibility on the DS and aggregation solutions at the system level. This book discusses these issues and presents solutions for effectively tackling them.
The power system has often been cited as the greatest and most complex machine ever built, yet it is predominantly a mechanical system. Technologies and intelligent systems are now available that can significantly enhance the overall functionality of power distribution and make it ready to meet the needs of the 21st century. This book explains how sensors, communications technologies, computational ability, control, and feedback mechanisms can be effectively combined to create this new, continually adjusting "smart grid" system. It provides an understanding of both IntelliGridSM architecture and EnergyPortSM as well as how to integrate intelligent systems to achieve the goals of reliability, cost containment, energy efficiency in power production and delivery, and end-use energy efficiency.
This book is the first of its kind to comprehensively describe the principles of demand response. This allows consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage in response to the grid reliability need, time-based rates or other forms of financial incentives. The main contents of the book include modeling of demand response resources, incentive design, scheduling and dispatch algorithms, and impacts on grid operation and planning. Through case studies and illustrative examples, the authors highlight and compare the advantages, disadvantages and benefits that demand response can have on grid operations and electricity market efficiency. First book of its kind to introduce the principles of demand response; Combines theory with real-world applications useful for both professionals and academic researchers; Covers demand response in the context of power system applications.
Electric power systems worldwide face radical transformation with the need to decarbonise electricity supply, replace ageing assets and harness new information and communication technologies (ICT). The Smart Grid uses advanced ICT to control next generation power systems reliably and efficiently. This authoritative guide demonstrates the importance of the Smart Grid and shows how ICT will extend beyond transmission voltages to distribution networks and customer-level operation through Smart Meters and Smart Homes. Smart Grid Technology and Applications: Clearly unravels the evolving Smart Grid concept with extensive illustrations and practical examples. Describes the spectrum of key enabling technologies required for the realisation of the Smart Grid with worked examples to illustrate the applications. Enables readers to engage with the immediate development of the power system and take part in the debate over the future Smart Grid. Introduces the constituent topics from first principles, assuming only a basic knowledge of mathematics, circuits and power systems. Brings together the expertise of a highly experienced and international author team from the UK, Sri Lanka, China and Japan. Electrical, electronics and computer engineering researchers, practitioners and consultants working in inter-disciplinary Smart Grid RD&D will significantly enhance their knowledge through this reference. The tutorial style will greatly benefit final year undergraduate and master’s students as the curriculum increasing focuses on the breadth of technologies that contribute to Smart Grid realisation.
This book analyzes the economic and technical effects of demand response programs in smart grids. A variety of operational and financial benefits are offered by demand response programs (DRPs) for load-serving entities, grid operators, and electricity consumers. The most notable advantages of DRPs are presented in this book, including decreased electricity prices, risk management, market power mitigation, and flexibility of market operations. In-depth chapters discuss the integration of demand response programs for the planning and operation of smart grids and explore the uncertainties of market prices, renewable resources and intermittent load management, making this a useful reference for a variety of different organizations and players in the electricity market, such as reliability organizations, distribution companies, transmission companies, and electric end-users.
The book compiles the research works related to smart solutions concept in context to smart energy systems, maintaining electrical grid discipline and resiliency, computational collective intelligence consisted of interaction between smart devices, smart environments and smart interactions, as well as information technology support for such areas. It includes high-quality papers presented in the International Conference on Intelligent Computing Techniques for Smart Energy Systems organized by Manipal University Jaipur. This book will motivate scholars to work in these areas. The book also prophesies their approach to be used for the business and the humanitarian technology development as research proposal to various government organizations for funding approval.
Explains the economics of electricity at each step of the supply chain: production, transportation and distribution, and retail.
This open access book explores the collision between the sustainable energy transition and the Internet of Things (IoT). In that regard, this book’s arrival is timely. Not only is the Internet of Things for energy applications, herein called the energy Internet of Things (eIoT), rapidly developing but also the transition towards sustainable energy to abate global climate is very much at the forefront of public discourse. It is within the context of these two dynamic thrusts, digitization and global climate change, that the energy industry sees itself undergoing significant change in how it is operated and managed. This book recognizes that they impose five fundamental energy management change drivers: 1.) the growing demand for electricity, 2.) the emergence of renewable energy resources, 3.) the emergence of electrified transportation, 4.) the deregulation of electric power markets, 5.) and innovations in smart grid technology. Together, they challenge many of the assumptions upon which the electric grid was first built. The goal of this book is to provide a single integrated picture of how eIoT can come to transform our energy infrastructure. This book links the energy management change drivers mentioned above to the need for a technical energy management solution. It, then, describes how eIoT meets many of the criteria required for such a technical solution. In that regard, the book stresses the ability of eIoT to add sensing, decision-making, and actuation capabilities to millions or perhaps even billions of interacting “smart" devices. With such a large scale transformation composed of so many independent actions, the book also organizes the discussion into a single multi-layer energy management control loop structure. Consequently, much attention is given to not just network-enabled physical devices but also communication networks, distributed control & decision making, and finally technical architectures and standards. Having gone into the detail of these many simultaneously developing technologies, the book returns to how these technologies when integrated form new applications for transactive energy. In that regard, it highlights several eIoT-enabled energy management use cases that fundamentally change the relationship between end users, utilities, and grid operators. Consequently, the book discusses some of the emerging applications for utilities, industry, commerce, and residences. The book concludes that these eIoT applications will transform today’s grid into one that is much more responsive, dynamic, adaptive and flexible. It also concludes that this transformation will bring about new challenges and opportunities for the cyber-physical-economic performance of the grid and the business models of its increasingly growing number of participants and stakeholders.