Download Free Delta A Paradox Logic Book in PDF and EPUB Free Download. You can read online Delta A Paradox Logic and write the review.

This book is about “delta”, a paradox logic. In delta, a statement can be true yet false; an intermediate state, midway between being and non-being. Delta's imaginary value solves many paradoxes unsolvable in two-valued Boolean logic, including Russell's, Cantor's, Berry's and Zeno's.Delta has three parts: “inner delta logic”, covering “Kleenean logic”, which resolves self-reference; outer delta logic, covering Z mod 3, conjugate logics, cyclic distribution, and the voter's paradox; and “beyond delta logic”, covering four-valued logic and games.
This book is about "delta", a paradox logic. In delta, a statement can be true yet false; it is an "imaginary" state, midway between being and non-being. Delta's imaginary value solves many logical dilemmas unsolvable in two-valued Boolean logic. Delta resolves these paradoxes -- Russell's, Cantor's, Betty's and Zeno's. Delta has two parts: inner delta logic, or "Kleenean logic", which resolves the classic paradoxes of mathematical logic; and outer delta logic, which relates delta to Z mod 3, conjugate logics, cyclic distribution, and the voter' paradox.
This book is about “diamond”, a logic of paradox. In diamond, a statement can be true yet false; an “imaginary” state, midway between being and non-being. Diamond's imaginary values solve many logical paradoxes unsolvable in two-valued Boolean logic. In this volume, paradoxes by Russell, Cantor, Berry and Zeno are all resolved. This book has three sections: Paradox Logic, which covers the classic paradoxes of mathematical logic, shows how they can be resolved in this new system; The Second Paradox, which relates diamond to Boolean logic and the Spencer-Brown “modulator”; and Metamathematical Dilemma, which relates diamond to Gödelian metamathematics and dilemma games.
Geometry, Language and Strategy is a way of looking at game theory or strategic decision-making from a scientific perspective, using standard equations from the fields of engineering and physics. To better approximate reality, it extends game theory beyond the two-player set piece. The book begins where former game theory literature ends OCo with multi-person games on a world stage. It encompasses many of the variables encountered in strategic planning, using mathematics borrowed from physics and engineering, rather than the economic models which have not proven to be good in predicting reality. Sample Chapter(s). Chapter 1: Introduction (1,364 KB). Contents: Rules-of-the-Game; Flow of Strategic-Mass; Game Symmetries; Analysis; Graphical Presentation; Applications and Open Problems; Appendices: Thermodynamics; Symmetry in Differential Geometry; Central Strategies; Single Strategy Model; Single Strategy Numerical Solutions; Streamlines; Player Fluid. Readership: Mathematicians and scientists who wish to broaden their understanding of economic possibilities using game theory."
The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory.Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory.In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V O Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams.Graph-links can be treated as OC diagramless knot theoryOCO: such OC linksOCO have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory.
The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.
Cosmology, the study of the universe, arouses a great deal of public interest, with serious articles both in the scientific press and in major newspapers, with many of the theories and concepts (e.g. the 'big bang' and 'black holes') discussed, often in great depth.Accordingly the book is divided into three parts:Part 1 is readable (and understandable) by anyone with a nodding acquaintance with the basic language of cosmology: events, lights paths, galaxies, black holes and so on. It covers the whole story of the book in a way as untechnical as possible given the scope of the topics covered.Part 2 covers the same ground again but with enough technical details to satisfy a reader with basic knowledge of mathematics and/or physics.Part 3 consists of appendices which are referred to in the other parts and which also contain the highly technical material omitted from Section 2.
This book studies dihedral groups, dicyclic groups, other finite subgroups of the 3-dimensional sphere, and the 2-fold extensions of the symmetric group on 4 letters from the point of view of decorated string diagrams of permutations. These are our metaphorical quipu. As you might expect, the book is replete with illustrations. In (almost) all cases, explicit diagrams for the elements of the group are given. The exception is the binary icosahedral group in which only the generators and relations are exhibited.
Laws of Form is a seminal work in foundations of logic, mathematics and philosophy published by G Spencer-Brown in 1969. The book provides a new point of view on form and the role of distinction, markedness and the absence of distinction (the unmarked state) in the construction of any universe. A conference was held August 8-10, 2019 at the Old Library, Liverpool University, 19 Abercromby Square, L697ZN, UK to celebrate the 50th anniversary of the publication of Laws of Form and to remember George Spencer-Brown, its author. The book is a collection of papers introducing and extending Laws of Form written primarily by people who attended the conference in 2019.
This volume is the result of the author's many-years of research in this field. These results were presented in the author's two books, Introduction to the Algorithmic Measurement Theory (Moscow, Soviet Radio, 1977), and Codes of the Golden Proportion (Moscow, Radio and Communications, 1984), which had not been translated into English and are therefore not known to English-speaking audience. This volume sets forth new informational and arithmetical fundamentals of computer and measurement systems based on Fibonacci p-codes and codes of the golden p-proportions, and also on Bergman's system and 'golden' ternary mirror-symmetrical arithmetic. The book presents some new historical hypotheses concerning the origin of the Egyptian calendar and the Babylonian numeral system with base 60 (dodecahedral hypothesis), as well as about the origin of the Mayan's calendar and their numeral system with base 20 (icosahedral hypothesis). The book is intended for the college and university level. The book will also be of interest to all researchers, who use the golden ratio and Fibonacci numbers in their subject areas, and to all readers who are interested to the history of mathematics.